• Title/Summary/Keyword: Particle Size Distribution(PSD)

Search Result 44, Processing Time 0.027 seconds

Settling Characteristics of Natural Loess Particles in Seawater (해수 중에서 자연상태 황토입자의 침강특성)

  • KIM Sung-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.6
    • /
    • pp.706-712
    • /
    • 1999
  • PSD (particle size distribution) for 2,000 mg/$\ell$ natural loess in seawater showed normal distribution cure at 0 minute settling time, accompanying with very large particle distribution range with its mean particle diameter of 31.6 $\mu$m and coencient of variance of $72.6\%$, With elapsed time it showed that the PSD was rapidly changed from normal distribution cure to abnormal distribution curve, steepened the right-hand side of it and its coefficient of variance was getting increased because of rapid settling of large size particles, Cumulative weight distribution showed that 2,000 mg/$\ell$ natural loess in seawater was almost $100\%$ constituted of particles bigger than 20 $\mu$m in diameter. Ratio of $V_s/(D_{bm})^{1/2}$ for loess particles in seawater was increased with increase of particle size in geometrical progression. Almost all loess particles in seawater had Stokes settling velocity not less than 2,255 times of Brownian diffusion coefficient, There was almost to EDL (about 0.4 nm) around natural loess particles in seawater, Thus, there was always LVDW attractive force between loess particles approaching each other in seawater, and almost no EDL repulsive force. Loess particles were not always in the condition of easy floe formation. Concentration of natural loess in seawater increasing from 400 mg/$\ell$ to 10,000 mg/$\ell$, characteristics of the settling was changed from Type I settling (discrete settling) to Type II settling (flocculation settling). PVD (particle volume distribution) showed that natural loess particles in seawater were largely constituted of two types of particles, such as rapidly settling particles and suspended and dispersed particles for a long time. Amount of the latter was much less than that of the former.

  • PDF

The Application of Fractal Theory in Geotechnical Engineering (플랙탈 이론의 지반공학에서의 응용)

  • Yu, Chan;Chang, Pyung-Wuck;Baveye, Philippe
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.360-364
    • /
    • 2001
  • The fractal theory is an interesting tool for measuring the soil properties which are irregular and dynamical. A simple example is shown in this paper that (statistical) fractal dimension can be evaluated from the traditional Particle-size distribution(PSD) curve. The results of Wu et al.(1993) and Bittelli el al.(1999) were referred to demonstrate the fractal analysis.

  • PDF

Adsorption Properties of Fuel-Cell Electrode Produced from Activated Carbon Fibers in Three Phase Distribution (삼상 계면대에서 활성 탄소섬유로 된 연료전지 전극의 흡착 특성)

  • 박수진;정효진;나창운
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.46-51
    • /
    • 2003
  • In this work, the electrode far fuel cell was fabricated by mixing carbon blacks with activated carbon fibers (ACFs) in order to form the proper three phase distribution, and then the change of electrode in three phase distribution was investigated. Pt loading yield with ACF content and Pt particle size were determined by AAS and XRD measurements, respectively. And the pore structures, including specific surface area ($S_{BET}$), microporosity, and pore size distribution (PSD) for each electrode were systematically investigated by BET volumetric measurement. The morphology of electrode in three phase distribution was determined by SEM. As an experimental result, it was observed that Pt loading yield was not influenced on the content of ACF. While, the electrode in three phase distribution was largely improved in the case of 30% ACF addition on carbon blacks. These results were probably explained by the increase of the portion of micropores, resulting in increasing the active sites of catalyst.

Synthesis of Size Controlled Spherical Silica Nanoparticles via Sol-Gel Process within Hydrophilic Solvent

  • Kim, Tae Gyun;An, Gye Seok;Han, Jin Soon;Hur, Jae Uk;Park, Bong Geun;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.49-54
    • /
    • 2017
  • In this study, based on hydrolysis and condensation via $St{\ddot{o}}ber$ process of sol-gel method, synthesis of mono-dispersed silica nanoparticles was carried out with hydrophilic solvent. This operation was expected to be a more simplified process than that with organic solvent. Based on the sol-gel method, which involves simply controlling the particle size, the particle size of the synthesized silica specimens were ranged from 30 to 300 nm by controlling the composition of tetraethylorthosilicate (TEOS), DI water and ammonia solution, and by varying the stirring speeds while maintaining a fixed amount of ethanol. Increasing the content of DI water and decreasing the content of ammonia caused the particle size to decrease, while controlling the stirring speed at a high level of RPMs enabled a decrease of the particle size. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were utilized to investigate the success factors for synthesizing process; Field emission scanning electron microscopy (FE-SEM) was used to study the effects of the size and morphology of the synthesized particles. To analyze the dispersion properties, zeta potential and particle size distribution (PSD) analyses were utilized.

The Soil Particles Distributions and Fractal Dimension (흙의 입도분포와 플랙탈 차원)

  • Yu, Chan;Ahn, Sung-Yul;Lee, Chang-No;Baveye, Philippe C.
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.25-32
    • /
    • 2002
  • The fractal dimension that was evaluated with soil components from the traditional particle-size distribution(PSD) curve was analyzed using the results of Wu et al.(1993) and Bittelli et al.(1999). In order to find the change of the variation of fractal dimension with the upper and lower limit, three limit values(200$\mu{m}$, 63$\mu{m}$, and 125$\mu{m}$) were chosen, and these results of fractal dimension analysis were compared to the result that was evaluated in the whole range of the soils. The results showed that it is possible to evaluate fractal dimension from the traditional PSD curve with the soil contents, and it showed that Bittelli et at.(1999)'s upper and lower limit value was more reasonable than Wu et al.(1993). Equations that were presented by Bittelli et at.(1999) also showed a good agreement with the analytical results in the silt domain.

An estimation method for the maintenance timing of the infiltration trench (침투도랑 시설의 유지관리 시점 산정방법에 관한 연구)

  • Lee, Seung Won;Cha, Sung Min
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • To manage the non-point source pollution and restore the water circulation, many technologies including infiltration or reservoir systems were installed in the urban area. These facilities have many problems regarding maintenance as their operation period becomes lengthier. The purpose of this study was to estimate the optimal maintenance timing through a long-term load test on the infiltration trench as one of the low impact development techniques. An infiltration trench was installed in the demonstration test facility, and stormwater was manufactured by Manual on installation and operation of non-point pollution management facilities from the Ministry of Environment, Korea and entered into the infiltration trench. Particle size distribution (PSD), suspended solids (SS) removal efficiency, and infiltration rate change tests were performed on inflow and outflow water. In case of the PSD, the maximum particulate size in the outflow decreased from 64 ㎛ to 33 ㎛ as the operating duration elapsed. The SS removal efficiency improved from 97 % to 99 %. The infiltration rate changed from 0.113 L/sec to 0.015 L/sec during the operation duration. The maintenance timing was determined based on the stormwater runoff requirements with these changes in water quality and infiltration rate. The methodologies in this study could be used to estimate the timing of maintenance of other low impact development techniques.

Modeling of Sedimentation and Vertical Dispersion of Coastal Sediment Particles Contaminated with PCBs (PCB로 오염된 연안 퇴적물 입자의 침강 및 연직확산 모델연구)

  • Lee Du Gon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.1
    • /
    • pp.39-46
    • /
    • 1998
  • This study presents a numerical model that can simulate changes of particle size distribution (PSD) of PCB-contaminated coastal sediments. The developed model has one spatial dimension including sedimentation and vortical dispersion as well as coagulation. The reason for considering the vortical transport mechanisms is to calculate residence time of the particles. Using the model and Initial PSD data based on actual coastal sediments contaminated with PCBs, this study shows results of model simulations. Within 48 hours of the simulation time, the PSD changed significantly and the particles were removed from water in different rates between different particle sizes. It also shows that coagulation can act an important role in this process. The model may be useful in assessing the range of resuspended sediments that can pollute neighboring areas during environmental remediation projects such as dredging.

  • PDF

Simulation of Plume Length Induced by Orimulsion Combustion (오리멀젼 연소시 발생하는 백연의 연기거리 전산모사)

  • Kwak, Byoung-Kyu;Kim, Jong-Ho;Joo, Ji-Bong;Lee, Jeong-Jin;Kim, Jin-Soo;Kim, Young-Hun;Yi, Jong-Heop
    • Clean Technology
    • /
    • v.14 no.2
    • /
    • pp.136-143
    • /
    • 2008
  • The objective of this study is to investigate the visibility of plume at the Y power plant stack, which fires the orimulsion as a fuel. The plume contains numerous primary particles under $1\;{\mu}m$ size and inorganic ions possibly inferred by the chemicals of secondary aerosol formation. We evaluated the visibility of the plume using the modified PLUVUE-II model. The monitoring data on the particle size distribution (PSD) and secondary aerosols of sulfate were applied to estimate and evaluate the main factors of plume opacity. The chemical reactions were applied to the model for the secondary aerosol formation of $(NH_4)_2SO_4(s)$. The maximum plume length was estimated by an optic method using threshold contrast. The results showed that the plume length was strongly dependent upon the PSD and $(NH_4)_2SO_4(s)$ concentration of the plume emitted from the stack.

  • PDF

Preparation and Low-Voltage Luminescent Properties of $SrTiO_3$:Al, Pr Red Phosphor (저전압용 $SrTiO_3$ : Al, Pr 적색 형광체 합성 및 발광특성)

  • Park, Jeong-Gyu;Ryu, Ho-Jin;Park, Hui-Dong;Choi, Seung-Cheol
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.601-606
    • /
    • 1998
  • The $SrTi0_3$:Al, Pr red phosphors were prepared by solid state reaction method. Phosphor preparation parameters such as sintering temperature and time were optimized for the photoluminescence(PU intensity and the cathodoluminescence(CL) intensity. Powder samples showed the characteristic X-ray diffraction patterns of the perovskite structure and the average particle size of 3~5/$\mu\textrm{m}$ for particle size distribution(PSD) analysis. Also, scanning electron microscopy for the powder samples showed that the particles are reasonably crystallized with spherical shape. Especially, higher low voltage CL properties of $SrTi0_3$:Al, Pr phosphors than commercial $Y_2O_3$:Eu phosphors are expected to be applied for a low voltage field emission display(FED).

  • PDF

A Study on a Vertical Transport Model of Coastal Sediments Using Particle Size Distribution Data from a Settling Column (Settling Column의 입자분포 측정치를 이용한 연안 퇴적물 입자의 연직이동 모델 연구)

  • Lee Du Gon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.1
    • /
    • pp.26-33
    • /
    • 1999
  • Coastal sediments in polluted areas adsorb many hydrophobic pollutants such as PCBs. During environmental remediation projects like dredging, they can be resuspended and transported to less polluted areas. To assess the environmental impact, the author previously developed a mathematical model that can simulate the changes of particle size distribution (PSD) due to sedimentation, vortical dispersion and coagulation. In this research, the simulation results using this model were presented in conjunction with observed PSDs from a 2-m settling column simulating coastal environments. The simulations showed that the model predictions were in fairly good agreement with the observed data (changes of PSDs in terms of depths and times), and that the resuspended sediments coagulated during the vertical transport. So, this study showed that the developed model has a good ability to describe the very complicated phenomena of real aggregation and vortical transport dynamics of coastal sediments with various particle sizes.

  • PDF