• Title/Summary/Keyword: Particle Size Distribution(PSD)

Search Result 44, Processing Time 0.021 seconds

Model for simulating the effects of particle size distribution on the hydration process of cement

  • Chen, Changjiu;An, Xuehui
    • Computers and Concrete
    • /
    • v.9 no.3
    • /
    • pp.179-193
    • /
    • 2012
  • The hydration of cement contributes to the performance characteristics of concrete, such as strength and durability. In order to improve the utilization efficiency of cement and its early properties, the particle size distribution (PSD) of cement varies considerably, and the effects of the particle size distribution of cement on the hydration process should be considered. In order to evaluate effects of PSD separately, experiments testing the isothermal heat generated during the hydration of cements with different particle size distributions but the same chemical composition have been carried out. The measurable hydration depth for cement hydration was proposed and deduced based on the experimental results, and a PSD hydration model was developed in this paper for simulating the effects of particle size distribution on the hydration process of cement. First, a reference hydration rate was derived from the isothermal heat generated by the hydration of ordinary Portland cement. Then, the model was extended to take into account the effect of water-to-cement ratio, hereinafter which was referred to as PSD hydration model. Finally, the PSD hydration model was applied to simulate experiments measuring the isothermal heat generated by the hydration of cement with different particle size distributions at different water-to-cement ratios. This showed that the PSD hydration model had simulated the effects of particle size distribution and water-to-cement ratio on the hydration process of cement with satisfactory accuracy.

Analysis model for the pneumatic solid processing system in non-uniform particle size condition (불균일 입도를 가지는 기류식 고체 처리 시스템을 위한 해석모델)

  • Choi, Donghwan;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.229-231
    • /
    • 2015
  • In pneumatic reactor, hydrodynamic relation between gas and solid is important and particle size has a significant effect on this relation. In this reason, we analyzed drying and calcine process with a corrected model by considering the effect of the particle size distribution(PSD) with different seven particle groups by particle size.

  • PDF

Effect of Particle Size Distribution of Glass Frit on the Transparency of Transparent Dielectric Layer for Plasma Display Panel

  • Park, Ji-Su;Han, Sun-Mi;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Kwang-Jin;Masaki, Takaki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.555-557
    • /
    • 2004
  • We report the effect of the particle size (D50) and PSD (Particle Size Distribution) of glass frit on the transparency of transparent dielectric layer of PDP. The milling efficiency of wet milling with water was the best among the dry milling, wet milling with IPA and wet milling with water. The transparency increased with the reduction of particle size of glass frit as the milling time increased. Also the transparency changed by the PSD of glass frit. Glass frits of broad PSD showed high transparency compared with the glass frits of sharp PSD.

  • PDF

Effects of normal stress, shearing rate, PSD and sample size on behavior of ballast in direct shear tests using DEM simulation

  • Md Hussain;Syed Khaja Karimullah Hussaini
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.475-486
    • /
    • 2023
  • Ballast particles have an irregular shape and are discrete in nature. Due to the discrete nature of ballast, it exhibits complex mechanical behaviour under loading conditions. The discrete element method (DEM) can model the behaviour of discrete particles under a multitude of loading conditions. DEM is used in this paper to simulate a series of three-dimensional direct shear tests in order to investigate the shear behaviour of railway ballast and its interaction at the microscopic level. Particle flow code in three dimension (PFC3D) models the irregular shape of ballast particles as clump particles. To investigate the influence of particle size distribution (PSD), real PSD of Indian railway ballast specification IRS:GE:1:2004, China high-speed rail (HSR) and French rail specifications are generated. PFC3D built-in linear contact model is used to simulate the interaction of ballast particles under various normal stresses, shearing rate and shear box sizes. The results indicate how shear resistance and volumetric changes in ballast assembly are affected by normal stress, shearing rate, PSD and shear box size. In addition to macroscopic behaviour, DEM represents the microscopic behaviour of ballast particles in the form of particle displacement at different stages of the shearing process.

Understanding the Properties of Cement Mortar with Employment of Stone Dust considering Particle Size Distribution (입도분포를 고려한 석분 사용에 따른 시멘트 모르타르 성질의 변화 이해)

  • Kang, Su-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.715-723
    • /
    • 2017
  • This study investigates the properties of a high-performance cementitious composite with partial substitution of stone dust for fine aggregate. The relationship between the properties and particle size distribution was analyzed using several analytical models. Experiments were carried out to examine the flowability, rheology, and strength of cement mortars with different stone-dust replacement ratios of 0-30 wt.%. The results showed improved flowability, lower rheological parameters (yield stress and plastic viscosity), and improved strength as the amount of stone dust increased. These results are closely related to the packing density of the solid particles in the mortar. The effect was therefore estimated by introducing an optimum particle size distribution (PSD) model for maximum packing density. The PSD with a higher amount of stone dust was closer to the optimum PSD, and the optimization was quantified using RMSE. The improvement in the PSD by the stone dust was proven to affect the flowability, strength, and plastic viscosity based on several relevant analytical models. The reduction in yield stress is related to the increase of the average particle diameter when using stone dust.

Estimation of Water Retention Characteristics Using Lognormal Distribution Model (로그분포모형을 이용한 토양수분특성 추정)

  • Sang Il Hwang
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.21-26
    • /
    • 2003
  • Hwang and Powers (2003) developed a simple model for estimating water retention characteristic (WRC) directly from particle-size distribution (PSD) data, by applying a lognormal distribution law to both PSD and pore-size distribution. The objective of this work was to determine if the performance of the model developed by Hwang and Powers (2003) would be affected by soil texture. The results of this research proved that the performance of the model was indeed affected by soil texture. In particular, its performance diminished with increases in the fine particle fractions. Also, the nonlinear model, which assumes a nonlinear relation between particle-size and pore-size, performed better than the linear model, regardless of soil texture classes.

Comparison of Particle-Size Distribution Models for Estimating Water Retention Characteristic (토양수분특성 추정을 위한 입자크기분포 모형들의 비교)

  • 황상일
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.103-114
    • /
    • 2002
  • Knowledge of soil water retention characteristic is essential for many problems involving water flow and organic solute transport in unsaturated soils. A physico-empirical approach based on the translation of the particle-size distribution (PSD) into a corresponding water retention curve has been accomplished by others using the concept that the pore-size distribution is directly related to PSD. This approach implies that details of a PSD curve may affect the estimation of water retention characteristic (WRC). To determine whether the WRC estimation using the Arya-Paris model could be affected by the selection of a PSD model, four PSD models with one to four fitting parameters were used. The Jaky model with only one fitting parameter had greater WRC estimation ability than other models with greater number of fitting parameters. The better performance of the Jaky model may be explained by the effect of soil structure in field soils.

Selecting the Best Soil Particle-Size Distribution Model for Korean Soils

  • Hwang, Sang-Il
    • Journal of Environmental Policy
    • /
    • v.2 no.1
    • /
    • pp.77-86
    • /
    • 2003
  • Particle-size distributions (PSDs) are widely used for the estimation of soil hydraulic properties. The objective of this study was to select the best model among the nine PSD models with different underlying assumptions, by using a variety of Korean soils. The Fredlund model with four parameters, the logistic growth curve, and Weibull distribution model showed the highest performance compared to the other models with the majority of soils studied. It was interesting to find that the logistic growth function with no fitting parameters showed a great fitting performance.

  • PDF

Prediction of Fate of Resuspended Sediment in the Development of Deep-sea Mineral Resources (심해저 자원 개발과정에서 재부유 퇴적물 입자의 동태 예측에 관한 연구)

  • Lee, Du-Gon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.45-50
    • /
    • 2002
  • This study presents a modeling method to predict fate of resuspended sediment in the development of deep-sea mineral resources. Resuspended deep-sea sediment during the development is considered a major environmental problem. In order to quantitatively analyze the resuspended sediment in the water column, particle size distribution (PSD) is considered an important factor. The model developed here includes PSD and coagulation process, as well as sedimentation process. Using the model, basic simulation was performed under representative environmental setting. The simulation showed the dynamics of change of particle size distribution for 50 m depth of water column up to 10 days of simulation time. Coagulation seemed an important factor in the fate of resuspended deep-sea sediment.

  • PDF

Effect of Initial Particle Size Distribution of (K0.5Na0.5)NbO3 Powders on Microstructure of Their Sintered Ceramics ((K0.5Na0.5)NbO3 세라믹스의 초기 분말 입도 분포가 소결체의 미세구조에 미치는 영향)

  • Yoo, Il-Ryeol;Choi, Seong-Hui;Cho, Kyung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.57-65
    • /
    • 2022
  • In this study, the effect of the initial particle size distribution (PSD) of (K0.5Na0.5)NbO3 powders on the microstructure of sintered ceramics was investigated. (K0.5Na0.5)NbO3 powders with uni-, bi-, tri-, and quad-modal PSDs were obtained through a planetary ball-mill. For the specimens sintered at 1080℃, the growth of abnormal grains was promoted from the powders exhibiting quad- and tri-modal PSDs with a high content of large particles, resulting in a microstructure in which huge abnormal grains were predominant. However, as the number of peaks in PSD and the overall particle size decreased, the abnormal grain growth was suppressed and the grain growth of small particles started, resulting in a microstructure with a uniform grain size. For the specimens sintered at 1100℃, huge abnormal grains were not observed due to the decrease in the critical driving force for 2D nucleation even when powders with quad- and tri-modal PSDs were used. It was confirmed that when powder with unimodal PSD was used, a uniform microstructure that was not significantly affected by the sintering temperature could be obtained. The results of this study demonstrate that the microstructure of (K0.5Na0.5)NbO3-based ceramics can be controlled by controlling the particle size of the initial powder.