• Title/Summary/Keyword: Particle Size

Search Result 7,194, Processing Time 0.043 seconds

Size Distribution Characteristics of Particulate Matter Emitted from Cooking (조리과정에서 생성된 미세먼지의 크기분포 특성)

  • Joo, Sang-Woo;Ji, Jun-Ho
    • Particle and aerosol research
    • /
    • v.16 no.1
    • /
    • pp.9-17
    • /
    • 2020
  • The characteristics of particulate matter made from daily cooking at a Korean residential apartment house with three dwellers had been investigated for about 3 months. All data were recorded by an optical particle counter every minute at the kitchen. Types of cooking such as boiling, frying, and grilling that performed in the house were listed. Boiling only was used in 32% cases among total 234 meals. Frying and grilling were 14% and 11%, respectively. From an initial indoor particulate matter smaller than 10 ㎛ in diameter, the increases due to cooking are reported by size. In case of boiling, PM at 1-10 ㎛ size and under 1 ㎛ size little increased. Normally, particles from oil or combustion in a process of frying or grilling increased indoor PM. In a case of grilling, particle mass concentration in a region of 1-10 ㎛ in diameter increased as much as 295 ㎍/㎥. Mass concentration of particles smaller than 1 ㎛ increased as much as 33 ㎍/㎥.

Characterization of Surface Properties of $BaTiO_3$ Powder by XPS

  • Chun, Myoung-Pyo;Cho, Jung-Ho;Kim, Byung-Ik
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.678-679
    • /
    • 2006
  • The effects of particle size on the surface properties of hydro-thermally synthesized barium titanate powders were investigated by means of particle size analysis, specific surface area, SEM, zeta potential and XPS. Particle sizes were measured by laser light scattering and are in the range of 150 to 1100nm. Zeta potential increased with increasing particle size and it was large minus value in the range of particle size from 500 to 900nm, which seems to be related with the dissolution of $Ba^{2+}$ ion in these particle sizes from the analysis of surface properties by XPS.

  • PDF

Combustion Characteristics of Immobilized Alcohols in Porous Material (다공성 물질에 함침시킨 알콜의 연소특성)

  • 우인성;황명환
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.76-82
    • /
    • 1994
  • Combustion phenomena(characteristics) of organic solvents including various alcohols Immobilized on ceramic balls were studied. Experiments were performed by burning methyl, ethyl, and propyl alcohol immobilized on sands (particle size 0.35mm) and coramic balls(particle size 1~5mm) to measure mass burning rate, height burning rate and combustion temperature. The longer time from ignition to extinguishment was resualted from the larger particle size of ceramic balls and the smaller size of ceramic balls exhibited the higher mass burning rate. Of alcohols tested the relative magnitude of facilitation of combustion was methyl >ethyl >propyl. Combustion temperatare of alcohols, without regard to the types of alcohols, was not increased with smaller ceramic balls(up to 3mm of particle size). However, with larger ceramic balls, combustion temperatare of alcohols was increased by 40~5$0^{\circ}C$ and the highest combustion temperatare was obtained with sands(particle size 0.35mm). Also, second rising was occurred at the combustion time of I5-20min. and this second rising time was increased with the smaller particle. These results will be able to be used for petrochemical industries using particles to evaluate the danger of fire and explosion.

  • PDF

Particle Size and Shape Analysis : The Key to Success in Metal Powder Production

  • Pankewitz, Axel;Park, Yong-Jae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.702-703
    • /
    • 2006
  • The particle size distribution and shape are among the important parameters for characterisation of quality of metal powders. Specific material properties such as ability to flow, reactivity as well as compressibility and its hardening potentials hence the most important characteristics of sintered metals - are determined by the size distribution and shape. The correct particle size distribution and particle shape information are the key to best product quality in atomisation processes of aluminium, milling of pure metals and other processes. This paper presents state-of-the-art technology for characterization of particle size distribution and shape.

  • PDF

Studies on The Paper Making Technique and TsaiLun (제지술과 채륜에 관한 연구)

  • JongchanLee
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.14 no.2
    • /
    • pp.81-99
    • /
    • 1996
  • The characteristics of printing inks are affected, to a greater or lesser extent, by the size and distribution of the pigment particles in the dispersion. Color strength, transparency and gloss increase with a decrease in particle size of pigments and with an increase in surface area of pigments. On the contrary, opacity and lightfastness tend to increases with an increase in particle size of pigments and with a decrease in surface are and particle size if pigments on the physical properties of printing ink which made up vehicles for sheet fed and organic pigment Lake Red C(C.I Pigment Red 53:1) that different surface area and particle size.

  • PDF

Deposition of Polydisperse Particles in a Falkner-Skan Wedge Flow (포크너-스캔 경계층유동에서의 다분산 입자부착에 대한 연구)

  • 조장호;황정호;최만수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2342-2352
    • /
    • 1995
  • Deposition of flame-synthesized silica particles onto a target is utilized in optical fiber preform fabrication processes. The particles are convected and deposited onto the target. Falkner-Skan wedge flow was chosen as the particle laden flow. Typically the particles are polydisperse in size and follow a lognormal size distribution. Brownian diffusion, thermophoresis, and coagulation of the particles were considered and effects of these phenomena on particle deposition were studied. A moment model was developed in order to predict the particle number density and the particle size distribution simultaneously. Particle deposition with various wedge configurations was examined for conditions selected for a typical VAD process. When coagulation was considered, mean particle size and its standard deviation increased and particle number density decreased, compared to the case without coagulation. These results proved the fact that coagulation effect expands particle size distribution. The results were discussed with characteristics of thermal and diffusion boundary layers. As the boundary layers grow in thickness, overall temperature and concentration gradients decrease, resulting in decrease of deposition rate and increase of particle residence time in the flow and thus coagulation effect.

Influence of Particle Size of Quartz on the Strength of Porcelain Body (자기질 요지의 강도에 미치는 석영입도의 영향)

  • 이은상;김진영
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.3
    • /
    • pp.209-216
    • /
    • 1984
  • The influence of the particle size of quartz and the change of cooling rate to the strength of conventional triaxial porcelain was studied, . The results indicate that 1. The residual quartz content was increased by particle size increasing. And the strength was increased by increas-ing residual quartz content which increased the total stress in the specimen. But the influence of residual quartz was lessened by the extent of crack between quartz particle and glass matrix 2. In order to increase the strength of the body fast cooling is suitable to small quartz particle and slow cooling is suitable to large quartz particle.

  • PDF

Effect of Grinding Methods on Particle Size and Crystalline Structure of Copper Phthalocyanine (분쇄방법에 따른 구리프탈로시아닌 입자크기 및 결정구조 변화)

  • Lee, Jeong Se;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.41-47
    • /
    • 2007
  • Crude copper phthalocyanine (Cupc) was synthesized by Wyler process, then grounded using various methods such as acid pasting, kneader, attritor and SC-mill. Particle size, shape and crystalline structure were compared and evaluated after particle size reductions. Cupcs prepared by acid pasting and kneader methods that are excellent manufacturing processes in industry were used as our standards. Particle properties of Cupcs prepared either by attritor or by SC-mill were compared with particle size analyzer, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Particle size analyzer and SEM were used to analyze the variation of particle sizes of Cupc with milling time. Particle size was initially decreased up to the 90 min of milling time, thereafter it reversely began to increase in case of SC-mill. Cupc obtained from dry milling with attritor displayed strong cohesion so that particle size was not possible to determine with particle size analyzer. However, the optimum milling time was indirectly approximated from the analysis of XRD peak intensity.

Effect of Particle Size of Forage in the Dairy Ration on Feed Intake, Production Parameters and Quantification of Manure Index

  • Moharrery, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.4
    • /
    • pp.483-490
    • /
    • 2010
  • The objectives of this study were to measure particle size and evaluate the effect of increasing alfalfa hay particle size on production characteristics in lactating Holstein dairy cows. Ninety multiparous Holstein cows in early to mid-lactation were randomly assigned in a complete randomized design for a 30-day period. Animals were offered one of the three diets, which were identical in energy, protein, and chemical composition, but differed only in particle size of alfalfa hay. The treatments were A) total mixed ration (TMR) in which only fine chopped alfalfa hay was incorporated in the ration, B) the same diet in which half of the alfalfa hay was fine chopped and incorporated in the mixed ration and half was long hay and offered as a top dressing, and C) the same diet with long hay alfalfa offered as a top dressing. Distribution of particle size of rations was determined through 20,000, 8,000 and 1,000 ${\mu}m$ sieves. The new method of quantitative determination of manure index was examined for each cow on different treatments. The geometric mean length of particle size in the rations was 5,666, 9,900 and 11,549 ${\mu}m$ for treatments A, B and C, respectively. Fat corrected milk (4%), milk fat percentage and production were significantly different (p<0.05) in treatment A versus B and C (fat corrected milk (FCM, 4%)) 28.3 vs. 35.2 and 32.3 kg/d, fat percentage 2.89, 4.04 and 3.62; but the change of ration particle size had no significant effect on milk production (p>0.05). Blood concentration of cholesterol in treatment A was significantly higher (p<0.05) than treatment B and C (181.0 vs. 150.0 and 155.2 mg/dl). Manure index in treatment C was significantly different (p<0.05) from treatment B (15.86 vs. 17.67). Based on these experimental findings, it is concluded that an increase in the ration particle size can increase milk fat percentage due to providing more physically effective fiber, which in turn could effect changes in manure consistency.

[Retraction]Characterization of carbon black nanoparticles using asymmetrical flow field-flow fractionation (AsFlFFF)

  • Kim, Kihyun;Lee, Seungho;Kim, Woonjung
    • Analytical Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.77-87
    • /
    • 2019
  • High viscosity carbon black dispersions are used in various industrial fields such as color cosmetics, rubber, tire, plastic and color filter ink. However, carbon black particles are unstable to heat due to inherent characteristics, and it is very difficult to keep the quality of the product constant due to agglomeration of particles. In general, particle size analysis is performed by dynamic light scattering (DLS) during the dispersion process in order to select the optimum dispersant in the carbon black dispersion process. However, the existing low viscosity analysis provides reproducible particle distribution analysis results, but it is difficult to select the optimum dispersant because it is difficult to analyze the reproducible particle distribution at high viscosity. In this study, dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AsFlFFF) analysis methods were compared for reproducible particle size analysis of high viscosity carbon black. First, the stability of carbon black dispersion was investigated by particle size analysis by DLS and AsFlFFF according to milling time, and the validity of analytical method for the selection of the optimum dispersant useful for carbon black dispersion was confirmed. The correlation between color and particle size of particles in high viscosity carbon black dispersion was investigated by using colorimeter. The particle size distribution from AsFlFFF was consistent with the colorimetric results. As a result, the correlation between AsFlFFF and colorimetric results confirmed the possibility of a strong analytical method for determining the appropriate dispersant and milling time in high viscosity carbon black dispersions. In addition, for nanoparticles with relatively broad particle size distributions such as carbon black, AsFlFFF has been found to provide a more accurate particle size distribution than DLS. This is because AsFlFFF, unlike DLS, can analyze each fraction by separating particles by size.