• Title/Summary/Keyword: Particle Pulse

Search Result 162, Processing Time 0.025 seconds

Dispersion of Particle Pulse in Human Lung Airway (인체기관지내의 입자펄스 확산 실험)

  • 이진원;이동엽;추경호
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.511-518
    • /
    • 1998
  • In order to develop the aerosol bolus technique which is thought to be a potential tool for probing geometries or abnormalities of small airways, an experimental system of measuring fast time variations of particle concentration in the inhaled and exhaled breathing air was developed. The system generates monodisperse sebacic acrid particles of 1 micron size and 1.2 of geometric standard deviation in high concentration of $10^8$ particles/cc, delivers a short pulse of particles at the controlled instant during inhalation using a solenoid valve, and measures the fast change of particle concentration in using the laser light scattering. Successful operation of the generator and the measuring system was confirmed by smooth concentration profiles in inhalation. It was also confirmed that maintaining a constant breathing rate is essential to stable outputs and any disturbance in flow rate near the mode (maximum concentration) induces a large number of spurious peaks in the exhalation. Experimental data without strict control of breathing flow rate showed a substantial amount of scatter. The measured results showed an improvement in scatter over the existing results. When compared with theoretical predictions from 1-D convective diffusion equation and other experiments, general characteristics of dispersion for several penetration depths showed a good agreement, but there exists some difference in absolute values, which is attributed to the difference in body conditions. Improvements are needed in the theory, especially in relation to correcting for the effect of breathing flow rate.

  • PDF

Removal of Inter-pulse Phase Errors for ISAR Imaging Using Rear View Radars of an Automobile (펄스 간 위상오차 보상을 통한 후방 감시 차량용 레이더의 ISAR 영상형성)

  • Kang, Byung-Soo;Kim, Kyung-Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.97-103
    • /
    • 2014
  • Signal processing technique of linear frequency modulation-frequency shift keying (LFM-FSK) waveform has been introduced for rear view radars of an automobile. LFM-FSK waveform consists of two sequential stepped frequency waveforms with some frequency offset, and thus, can be used to generate inverse synthetic aperture radar (ISAR) images of rear view target of an automobile. However, ISAR images can often be blurred due to inter-pulse phase errors. To resolve this problem, one-dimensional (1-D) entropies of high resolution range profiles (HRRP) are minimized with the help of particle swarm optimization (PSO). The searching space used in PSO is adaptively adjusted by the use of information on the target's velocity obtained from LFM-FSK waveforms. Simulation results show that the proposed method can generate well-focused ISAR images.

Installation for Preparing of Nanopowders by Target Evaporation with Pulsed Electron Beam

  • Sokovnin S. Yu.;Kotov Yu. A.;Rhee C. K.
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.167-173
    • /
    • 2005
  • Production of weakly agglomerated nanopowders with the characteristic size of about 10 nm and a narrow particle size distribution is still a topical problem especially if the matter is an acceptable output (>50 g/hour), a high purity of the final product, and a low (energy consumption. The available experience and literature data show that the most promising approach to production of such powders is the evaporation-condensation method, which has a set of means for heating of the target. From this viewpoint the use of pulsed electron accelerators for production of nanopowders is preferable since they allow a relatively simple adjustment of the energy, the pulse length, and the pulse repetition rate. The use of a pulsed electron accelerator provides the following opportunities: a high-purity product; only the target and the working gas will interact and their purity can be controlled; evaporation products will be removed from the irradiation zone between pulses; as a result, the electron energy will be used more efficiently; adjustment of the particle size distribution and the characteristic size of particles by changing the pulse energy and the irradiated area. Considering the obtained results, we developed a design and made an installation for production of nanopowders, which is based on a hollow-cathode pulsed gas-filled diode. The use of a hollow-cathode gas-filled diode allows producing and utilizing an electron beam in a single chamber. The emission modulation in the hollow cathode will allow forming an electron beam 5 to 100 ms long. This will ensure an exact selection of the beam energy. By now we have completed the design work, manufactured units, equipped the installation, and began putting the installation into operation. A small amount of nanopowders has been produced.

Numerical Investigation on Soot Primary Particle Size Using Time Resolved Laser Induced Incandescence (TIRE-LII) (시분해 레이저 유도 백열법을 이용한 매연 입자 크기에 관한 수치적 연구)

  • Lee, Jong-Ho;Kim, Jeong-Yong;Jeong, Dong-Soo;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.1022-1031
    • /
    • 2005
  • Temporal behavior of the laser induced incandescence (LII) signal is often used for soot particle sizing, which is possible because the cooling behavior of a laser heated particle is dependent on the particle size. In present study, LII signals of soot particles are modeled using two non-linear coupled differential equations deduced from the energy- and mass-balance of the process. The objective of this study is to obtain an appropriate calibration curve for determining primary particle size by comparing the gated signal ratio and double-exponential curve fitting methods. Not only the effects of laser fluence and gas temperature on the cooling behavior but also heat transfer mechanisms of heated soot particle have been investigated. The second-order exponential curve fitting showed better agreements with the LII signals than the gated signal ratio method which was based on the lust-order exponential curve fit. And the temporal decay rate of the LII signal and primary particle size showed nearly linear relationship, which was little dependent on the laser fluence. And it also could be reconfirmed that vaporization was dominant process of heat loss during first loons after laser pulse, then heat conduction played most important role while thermal radiation had little influence all the time.

Design and Fabrication of CLYC-Based Rotational Modulation Collimator (RMC) System for Gamma-Ray/Neutron Dual-Particle Imager

  • Kim, Hyun Suk;Lee, Jooyub;Choi, Sanghun;Bang, Young-bong;Ye, Sung-Joon;Kim, Geehyun
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.112-119
    • /
    • 2021
  • Background: This work aims to develop a new imaging system based on a pulse shape discrimination-capable Cs2LiYCl6:Ce (CLYC) scintillation detector combined with the rotational modulation collimator (RMC) technique for dual-particle imaging. Materials and Methods: In this study, a CLYC-based RMC system was designed based on Monte Carlo simulations, and a prototype was fabricated. Therein, a rotation control system was developed to rotate the RMC unit precisely, and a graphical user interface-based software was also developed to operate the data acquisition with RMC rotation. The RMC system was developed to allow combining various types of collimator masks and detectors interchangeably, making the imaging system more versatile for various applications and conditions. Results and Discussion: Operational performance of the fabricated system was studied by checking the accuracy and precision of the collimator rotation and obtaining modulation patterns from a gamma-ray source repeatedly. Conclusion: The prototype RMC system showed reliability in its mechanical properties and reproducibility in the acquisition of modulation patterns, and it will be further investigated for its dual-particle imaging capability with various complex radioactive source conditions.

Implementation of Particle Measuring Sensor System Using Laser Optical Scattering Method (레이저 광산란식 미세먼지 측정 시스템의 실현)

  • Kim, Gyu-Sik;Na, Hyeong-Uk;Kang, Sang-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.365-366
    • /
    • 2008
  • 광학입자 계수기는 실내환경, 대기오염 및 콜린룸 등 입자크기분포 측정장비로 가장 많이 사용된다. 광학입자 계수기에 샘플링된 업자는 관측체적 내로 1개씩 통과 하며 산란된 빚은 집광장치에 의해 광검출기로 전달한다. 이때 산란광의 양에 비례하여 전압 (전류)의 세기로 변환하여 전기적 선호로서 나타나는 Pulse의 높이는 Calibration Data에 따라 업자의 크기로 변환하고 Pulse의 개수는 입자의 개수로 표시된다. 입자의 크기와 개수등 이용하여 부피로 환산 한 후 부유하는 입자의 평균 밀드를 이용하여 질량으로 환산시킨다. 이렇게 측정된 미세먼지 농도는 ZigBee 통신을 사용하여 구축한 시스템을 통해서 중앙부에서 실시간으로 먼지 농도를 알 수 있다. 특히 멀티흡 기능을 이용하여 건물 구조가 복잡하거나 층간의 통신, 꺾인 부분이나 사무실 안과 밖과 같은 무선 통신이 원할 하지 못하는 경우를 극복하여 미세먼지의 농도 값을 측정 할 수도 있다.

  • PDF

Development of a Dynamic PIV System for Turbulent Flow Analysis (난류유동 해석을 위한 Dynamic PIV 시스템의 개발)

  • Lee Sang-Joon;Jang Young-Gil;Kim Seok
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.71-77
    • /
    • 2005
  • Information on temporal evolution of whole velocity fields are essential for physical understanding of a complicated turbulent flow. Due to advances of high-speed imaging technique, laser and electronics, high-speed digital cameras and high-repetition pulse lasers are commercially available in nowadays. A dynamic PIV system that can measure consecutive instantaneous velocity field with 1K$\times$ 1K pixels resolution at 1 fps was developed. It consists of a high-speed CMOS camera and a high-repetition Nd:YLF pulse laser. Theoretically, it can capture velocity fields at 20 fps with a reduced spatial resolution. In order to validate its performance, the dynamic PIV system was applied to a turbulent jet of which Reynolds number is about 3000. The particle images of 1024$\times$512 pixels were captured at a sampling rate of 4 KHz. The dynamic PIV system measured successfully the temporal evolution of instantaneous velocity fields of the turbulent jet, from which spectral analysis of turbulent structure was also feasible.

  • PDF

Design of High voltage nano pulse generator circuit for ion shutter of particle accelerator (입자가속기 Ion gate 구동을 위한 고전압 nano-pulse 발생기 회로 설계)

  • Oh, Hyun Jun;Jeong, Ku Young;Song, Kwan Seok;Roh, Chung Wook
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.248-250
    • /
    • 2019
  • 입자가속기는 물질의 미세 구조를 밝히기 위해 기본 입자를 가속, 충돌시키는 장치로 최근 암치료 등 의학적 용도로도 이용되고 있다. 그러나 고속으로 고압을 인가시켜야 하는 장치인 만큼 기존에 명확히 설립된 회로가 없다. 이에 본 논문에서는 Ion gate를 등가회로로 구성하여 Fast Switch 장치의 기본 회로를 제안 및 분석, 실험하였다. 또한 기본 회로에서 발생하는 문제들을 개선하고자 RC Input filter와 기타 파라미터들의 설계와 Fast switch와 Ion gate를 잇는 wire 내의 기생성분을 고찰하였고 Ion gate 구동을 위해 기준이 되는 명확한 Fast switch 회로를 제안한다.

  • PDF

A Compact Pulse Corona Plasma System with Photocatalyst for an Air Conditioner (광촉매와 조합된 코로나 방전 플라즈마 필터의 유해 가스 및 입자 제거 특성)

  • Shin, Soo-Youn;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.151-155
    • /
    • 2007
  • A compact discharge plasma system with a photocatalyst has been proposed and investigated experimentally for application to air conditioners. It was found that there was intense ultra violet radiation with high energy of 3.2 eV from the corona discharge due to the DC-biased pulse voltage applied on a wire. An electrophotochemical reaction took place apparently on the surfaces of the photocatalyst of $TiO_2$ irradiated ultra violet front the discharge plasma in the proposed plasma system. The proposed discharge plasma system with the photocatalyst of $TiO_2$ showed very high removal efficiency of VOCs by tile additional electrophotochemical reactions on the photocatalyst. The proposed discharge plasma system also showed very high removal efficiency of particles such as smokes, suspended bacteria, and pollen and mite allergens by the electrostatic precipitation part. This type of corona discharge plasma system with a photocatalyst can be used as an effective means of removing both indoor pollutant gases and particles including suspended allergens.

Inactivation of Escherichia coli, Saccharomyces cerevisiae, and Lactobacillus brevis in Low-fat Milk by Pulsed Electric Field Treatment: A Pilot-scale Study

  • Lee, Gun Joon;Han, Bok Kung;Choi, Hyuk Joon;Kang, Shin Ho;Baick, Seung Chun;Lee, Dong-Un
    • Food Science of Animal Resources
    • /
    • v.35 no.6
    • /
    • pp.800-806
    • /
    • 2015
  • We investigated the effects of a pulsed electric field (PEF) treatment on microbial inactivation and the physical properties of low-fat milk. Milk inoculated with Escherichia coli, Saccharomyces cerevisiae, or Lactobacillus brevis was supplied to a pilot-scale PEF treatment system at a flow rate of 30 L/h. Pulses with an electric field strength of 10 kV/cm and a pulse width of 30 µs were applied to the milk with total pulse energies of 50-250 kJ/L achieved by varying the pulse frequency. The inactivation curves of the test microorganisms were biphasic with an initial lag phase (or shoulder) followed by a phase of rapid inactivation. PEF treatments with a total pulse energy of 200 kJ/L resulted in a 4.5-log reduction in E. coli, a 4.4-log reduction in L. brevis, and a 6.0-log reduction in S. cerevisiae. Total pulse energies of 200 and 250 kJ/L resulted in greater than 5-log reductions in microbial counts in stored PEF-treated milk, and the growth of surviving microorganisms was slow during storage for 15 d at 4℃. PEF treatment did not change milk physical properties such as pH, color, or particle-size distribution (p<0.05). These results indicate that a relatively low electric-field strength of 10 kV/cm can be used to pasteurize low-fat milk.