• Title/Summary/Keyword: Particle Packing

Search Result 149, Processing Time 0.027 seconds

Analysis of Particle Packing Process by Contact Model in Discrete Element Method (입자 패킹 공정에 대한 접촉모델별 이산요소법 해석)

  • Lyu, Jaehee;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.59-65
    • /
    • 2019
  • In many industries, particle packing is adopted quite frequently. In the particle packing process, the Discrete Element Method (DEM) can analyze the multi-collision of particles efficiently. Two types of contact models are frequently used for the DEM. One is the linear spring model, which has the fastest calculation time, and the other is the Hertz-Mindlin model, which is the most frequently used contact model employing the DEM. Meanwhile, very tiny particles in the micrometer order are used in modern industries. In the micro length order, surface force is important to decreased particle size. To consider the effect of surface force in this study, we performed a simulation with the Hertz-Mindlin model and added the Johnson-Kendall-Roberts (JKR) theory depicting surface force with surface energy. In addition, three contact models were compared with several parameters. As a result, it was found that the JKR model has larger residual stress than the general contact models because of the pull-off force. We also validated that surface force can influence particle behavior if the particles are small.

Variation of Dielectric Constant with Various Particle Size and Packing Density on Inkjet Printed Hybrid $BaTiO_3$ Films

  • Lim, Jong-Woo;Kim, Ji-Hoon;Yoon, Young-Joon;Yoon, Ho-Gyu;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.271-271
    • /
    • 2010
  • $BaTiO_3$(BT) has high permittivity so that has been applied to dielectric and insulator materials in 3D system-level package integration. In order to achieve excellent performance of device, the BT layer should be highly dense. In this study, BT thick films were prepared by the inkjet printing method. And these films were cured at $280^{\circ}C$ after infiltration of polymer resin. As a result, we have successfully fabricated not only the inkjet-printed hybrid BT film but also metal-insulator-metal(MIM) capacitor without sintering process. Changes in the dielectric constant of BT hybrid film with particle size and packing density were investigated. The dielectric constant was increased with increasing packing density and particle size. Further, the BT hybrid film using two different size particles had even higher packing density and dielectric constant.

  • PDF

Prediction of collection performance for a granular bed filter filled with various shapes of packing material (다양한 형상의 충전물로 채워진 충전층 집진기의 집진성능 예측)

  • Jae-Hyun Park;Myong-Hwa Lee
    • Particle and aerosol research
    • /
    • v.19 no.4
    • /
    • pp.145-154
    • /
    • 2023
  • Granular bed filters are widely used to remove particulate matter in flue gas and are filled with various shapes of packing material. The packing material plays an important role in determining the overall collection performance, such as pressure drop and collection efficiency. The pressure drop of a granular bed filter has been calculated using the Ergun equation, while the collection efficiency has been predicted using the log-penetration equation based on the single sphere theory. However, a prediction equation of collection efficiency for a granular bed filter filled with non-spherical packing materials has not been suggested yet. Therefore, in this study, three different shapes of packing materials (sphere, cylinder, and irregular) were prepared to propose a prediction equation. The pressure drop and collection efficiency in a granular bed filter filled with each shape of packing material were measured experimentally and compared with theoretically predicted values. We found that experimentally measured pressure drops matched well with values theoretically predicted using the Ergun equation considering the shape factor. However, experimental collection efficiencies were higher than theoretical ones predicted by the log-penetration equation using the single sphere theory. We modified the log-penetration equation by employing a shape factor and found a good relationship between experimental and theoretical collection efficiencies.

Analysis on Particle Shape Characteristics of Jumunjin Sand using Fourier Descriptor (Fourier descriptor를 이용한 주문진표준사의 형상특성분석)

  • Min, Tuk-Ki;Kim, Seong-Gon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1182-1189
    • /
    • 2010
  • The mechanical behavior of a granular material is governed by the applying effective stresses and its skeletal structure which is considered to be the packing of particles giving overall density and degree of anisotropic. Factors that affect soil packing are the particle size, size distribution and shape, and the arrangement of grain contact. Soil particle size and shape are the most important factor, but difficult to quantify. In this study, 2D Fourier analysis is applied to quantify the shape of granular particles. Jumunjin sand was used in the experiment and particle images are captured using an optical microscope. The results showed that three lower order Fourier descriptor are closely related with roundness, sphericity of the granular particle. Also statistical approach is used to determine roundness, form factor, elongation ratio, roughness of Jumunjin sand.

  • PDF

Heat Transfer Characteristics of Plastic Particle Slurry in a Circular tube Flow (관내 유동 플라스틱 슬러리의 열전달 특성)

  • 김명환;김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.451-456
    • /
    • 2004
  • This present experimental study has dealt with the heat transfer characteristics of plastic particle slurry which flows in a circular tube. This type of slurry is suggested for heat transfer enhancement effect cause by random and vortex effect of plastic particle dispersed in water. As a result, the thermal boundary layer becomes thin so the heat transfer coefficient on the tube wall more increase compare to pure water flow. This experimental test section was composed with stainless pipe which has the length of 2000mm, inner pipe diameter of 14mm and outer pipe diameter of 60mm. The most effective and important parameter of this experiment is plastic packing factor(PPF). The focuses of these results are pressure drop and heat transfer coefficient. As results, the friction factor of plastic particle slurry becomes higher at laminar flow region than pure water because of buoyancy effect of plastic particle but the local heat transfer coefficient becomes higher.

The Effect on Treatment Performance of Fiber Filter Under Various Packing-Density and Filtration Velocity (충진밀도와 여과속도가 섬유사 여과기의 처리 성능에 미치는 영향)

  • Im, Jeong-Hoon;Kim, Hyo-Kwan;Lee, Jung-June;Moon, Tae-Sup;Jeong, Min-Ki;Woo, Hae-Jin;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.216-222
    • /
    • 2006
  • A flexile fiber filter developed in Korea was operated to evaluate the effect of packing density and filtration velocity on particle removal. The pilot-scale fiber filter with 40 cm of diameter and 2 m of height was packed with polyamide fibers of which mean diameter was approximately 0.93 mm. While the filtration velocity was maintained at 325 m/hr, the particle removal efficiency was compared with various of packing density from $70kg/m^3\;to\;100kg/m^3$. On the contrary, when the packing density was maintained at $70kg/m^3$, the particle removal efficiency was examined with various filtration velocity from 65 m/hr to 400 m/hr. The filtration pressure increased with the packing-density increase. Below $80kg/m^3$ of packing density, the removal efficiencies of turbidity ad SS were less than 30% and 50%, respectively. At $100kg/m^3$ of packing density, the removal efficiencies of them were nearly 45% and 60% respectively. The filtration pressure increased with the filtration-velocity increase. A better removal efficiency was obtained at a lower filtration velocity, removal efficiency of them were 73% at 65 m/hr. Consequently, The filtration velocity was the more important factor to enhance the particle removal efficiency compared with the packing density in fiber filter.

The Critical Pigment Volume Concentration Concept for Paper Coatings: II. Later-Bound Clay; Ground Calcium Carbonate, and Clay- carbonate Pigment Coatings

  • Lee, Do-Ik
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.5
    • /
    • pp.18-38
    • /
    • 2002
  • A previous study on the model coatings based on latex-bound plastic pigment coatings (1) has been extended to latex-bound No. 1 clay, ultra-fine ground calcium carbonate (UFGCC), and clay-carbonate pigment mixture coatings, which are being widely used in the paper industry. The latex binder used was a good film-forming, monodisperse S/B latex or 0.15$\mu\textrm{m}$. No. 1 clay was representative of plate-like pigment particles, whereas UFGCC was of somewhat rounded rhombohedral pigment particlel. Both of them had negatively skewed triangular particle size distributions having the mean particle suet of 0.7${\mu}{\textrm}{m}$ and 0.6$\mu\textrm{m}$, respectively. Their packing volumes were found to be 62.5% and 657%, respectively. while their critical pigment volume concentrations (CPVC's) were determined to be 52.7% and 50.5% ( average of 45% caused by the incompatibility and 55.9% extrapolated) by coating porosity, respectively. Each pigment/latex coating system has shown its unique relationship between coating properties and pigment concentrations, especially above its CPVC. Notably, the clay/latex coating system hat shown higher coating porosity than the UFGCC/latex system at high pigment concentrations above their respective CPVC's. It was also found that their coating porosity and gloss were inter-related to each other above the CPVC's, as predicted by the theory. More interestingly, the blends of these two pigments have shown unique rheological and coating properties which may explain why such pigment blends are widely used in the industry. These findings have suggested that the unique structure of clay coatings and the unique high-shear rheology of ground calcium carbonate coatings can be judiciously combined to achieve superior coatings. Importantly, the low-shear viscosity of the blends was indicative of their unique packing and coating structure, whereas their high-shear rheology was represented by a common mixing rule, i.e., a viscosity-averaging. Transmission and scanning electron and atomic force microscopes were used to probe the state of pigment / latex dispersions, coating surfaces, freeze fractured coating cross-sections, and coating surface topography. These microscopic studies complemented the above observations. In addition, the ratio, R, of CPVC/(Pigment Packing Volume) has been proposed as a measure of the binder efficiency for a given pigment or pigment mixtures or as a measure of binder-pigment interactions. Also, a mathematical model has been proposed to estimate the packing volumes of clay and ground calcium carbonate pigments with their respective particle size distributions. As well known in the particle packing, the narrower the particle size distributions, the lower the packing volumes and the greater the coating porosity, regardless of particle shapes.

Coagulation Properties of Granite Particle (화강석 잔사의 응집특성)

  • 홍영호
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.1
    • /
    • pp.12-19
    • /
    • 2002
  • This study was carried out to investigate the optimal condition for granite particle coagulation process by using various chemical coagulation agents. The coagulation of a suspended granite particle was monitored by using various different coagulants, such as $Al_2(SO_4)_3{\cdot}14H_2O,{\;}FeCl_3{\cdot}6H_2O,{\;}SA-solution(KOH{\;}+{\;}Al(OH)_3{\;}+{\;}K_2CO_3{\;}mixture)$ and jade particle. To accomplish this study, analysis of water quality, removing Turbidity and Packing Density were measured with jar-tester. In the results of this experiment, it was found that the removal rate of the granite particle was increased with the decrease of the pH of the sludge. The turbidity(NTU) at the above coagulants was reduced from 95% to 98%. Removed of Turbidity and Packing Density was more efficiency to the SA-solution than others.

Packing Density Parameters of Palladium Nanoparticle Monolayers Fabricated via Spin-Coating Electrostatic Self-Assembly

  • An, Minshi;Hong, Jong-Dal;Cho, Kyung-Sang;Lee, Eun-Sung;Choi, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.623-626
    • /
    • 2008
  • Spin-coating electrostatic self-assembly (SCESA) is utilized to fabricate a single layer of carboxylic-acid-coated Pd nanoparticles (NPs) (D??5 nm) on an oppositely charged surface. The packing density of a NP monolayer formed on a rotating solid substrate (3000 rpm) was examined with regards to various parameters, including the particle concentration, the pH, and the ionic strength of the solution. Initially, the packing density grew exponentially with increases in the particle concentration, up to a maximum value (of 8.4 ´ 1011/cm2) at 1.2 wt%. The packing density was also found to increase drastically as the pH decreased and the ionic strength of the solution increased; these trends can be attributed to a reduction in the interparticle repulsions among the NPs in the solution and on the substrate. The best result of this study was achieved in a 1.2 wt% solution at pH 8; under these conditions, an NP monolayer with the highest density (namely, 1.6 ´ 1012/cm2) was obtained.

Study on Characteristics of Shock Sensitivities of Pressable Plastic-Bonded Explosives(PBXs) Applying Multimodal Particle System (다성분 입자계를 적용한 압축형 복합화약의 ?감도특성 연구)

  • Park, Haneul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.96-106
    • /
    • 2017
  • In pressable polymer bonded explosives (PBXs), densification occurs due to rearrangement and deformation of explosive particles during pressing. If brittle explosives are compressed till particle fraction become higher than theoretical random close packing fraction (RCPF), bigger particles should be fractured to fill the void. In this study, multi-modal particle system was introduced for the decrease in possibility of particle fracture during compression expecting decrease in shock sensitivity of highly filled pressable PBX. The experimental results showed the trimodal particle system had low sensitivity with high density, compared to bimodal particle system.