• Title/Summary/Keyword: Particle Mass

Search Result 959, Processing Time 0.031 seconds

The Current Quality Control and State of Scorched Particles in Infant formula in Korea (한국 조제분유의 초분 관리 실태 및 현황)

  • Jeon, Jeong-Wook;Juhn, Seok-Lak;Chun, Ho-Nam;Yun, Sung-Seob
    • Journal of Dairy Science and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.55-60
    • /
    • 2007
  • Contents of scorched particles in infant formula were studied to provide a scientific evidence for standardization of Food Regulation in Korea. The specification of scorched particles in infant formula in Korea was satisfied with CODEX, USDA and so on. But food regulations for scorched particles in baby food are not mentioned in Korea. Nowadays social interests of scorched particles in infant formula are being increased in the respect of safety for baby food. The composition and contents of scorched particles were analyzed with Scanning Electron Microscope-Energy Dispersive X-ray Spectrometer(SEM-EDS) and Inductively Coupled Plasma Mass Spectrometer(ICP-MS). The results indicate that the scorched particles consist Ca, Na, Fe, Mg and trace elements derived from the ingredient of infant formula. Infant formula are composed of milk, skimmed milk, whey, mixed vegetable oils, minerals and vitamins. These results also show that the contents of scorched particles of infant formula in Korea are little or similar level to those reported in other countries. In general, heavy metals derived from scorched particle are originally used as a source of minerals in infant formula. And it has been thought that they doesn't effect on Provisional Tolerable Weekly Intake set by FAO/WHO for contents and composition of scorched particles.

  • PDF

Composition and pollution characteristics of PM10 and PM2.5 particles at Gosan site of Jeju Island in 2008 (PM10, PM2.5 미세먼지의 조성 및 오염 특성: 2008년 제주도 고산지역 측정 결과)

  • Lee, Soon-Bong;Jung, Duk-Sang;Cho, Eun-Kyung;Kim, Hyeon-A;Hwang, Eun-Yeong;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.310-318
    • /
    • 2011
  • The collection of atmospheric $PM_{10}$ and $PM_{2.5}$ particle samples was made at Gosan site of Jeju Island, which is one of the most representative background sites in Korea. Their chemical compositions have been analyzed to explore the pollution characteristics and emission sources. The mass concentrations of $PM_{10}$ and $PM_{2.5}$ particles were $37.6{\pm}20.1$ and $22.9{\pm}14.3{\mu}g/m^3$, respectively, with the content of $PM_{2.5}$ to $PM_{10}$ as 61%. The $PM_{2.5}/PM_{10}$ ratios of nss-$SO_4^{2-}$, $NO_3^-$, and $NH_4^+$ were 0.94, 0.56, 1.02, respectively, indicating that these components were distributed mostly in the fine fractions. Based on the factor analysis, it was found that the compositions of fine particles were mainly influenced by anthropogenic sources, followed by soil or marine sources. The results of the backward trajectory analysis indicate that the concentrations of nss-$SO_4^{2-}$, $NO_3^-$, $NH_4^+$, nss-$Ca^{2+}$, and Pb were high when the air parcels moved from the China continent, while relatively low with the air parcels coming from North Pacific Ocean and/or East Sea.

Comparative Study on Removal Characteristics of Disinfection By-products by Air Stripping and Flotation Processes (탈기와 부상 공정에 의한 소독부산물의 제거특성에 관한 비교 연구)

  • Cha, Hwa-Jeong;Won, Chan-Hee;Lee, Kang-Hag;Oh, Won-Kyu;Kwak, Dong-Heui
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.513-520
    • /
    • 2016
  • It is well known that volatile compounds including disinfection by-products as well as emissive dissolved gas in water can be removed effectively by air stripping. The micro-bubbles of flotation unit are so tiny as microns while the diameter of fine bubbles applied to air stripping is ranged from hundreds to thousands of micrometer. Therefore, the micro-bubbles in flotation can supply very wide specific surface area to transfer volatile matters through gas-liquid boundary. In addition, long emission time also can be gained to emit the volatile compound owing to the slow rise velocity of micro-bubbles in the flotation tank. There was a significant difference of the THMs species removal efficiency between air stripping and flotation experiments in this study. Moreover, the results of comparative experiments on the removal characteristics of THMs between air stripping and flotation revealed that the mass transfer coefficient, $K_La$ showed obvious differences. To overcome the limit of low removal efficiency of dissolved volatile compounds such as THMs in flotation process, the operation range of bubble volume concentration is required to higher than the operation condition of conventional particle separation.

Seasonal Characteristics of Atmospheric PM10 and PM2.5 in Iksan, Korea (익산지역 대기 중 PM10과 PM2.5의 계절별 특성)

  • Kang, Gong-Unn;Kim, Nam-Song;Shin, Eun-Sang
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.1
    • /
    • pp.29-43
    • /
    • 2011
  • The seasonal characteristics of atmospheric particulate matter (PM) were evaluated through the measurement of $PM_{10}$ (particles with an aerodynamic diameter of less than 10 ${\mu}m$) and $PM_{2.5}$ (particles with an aerodynamic diameter of less than 2.5 ${\mu}m$) collected in the downtown area of Iksan city over roughly two weeks in each season of 2004. During the sampling period, 54 samples of $PM_{10}$ and $PM_{2.5}$ were collected and then measured for mass concentrations of PM and its water-soluble inorganic ion species. The concentrations of $PM_{10}$ and $PM_{2.5}$ were highly variable on a daily time scale in all seasons, especially in fall. Annual concentrations of $PM_{10}$ and $PM_{2.5}$ were $54.7{\pm}21.6\;{\mu}g/m^3$ and $34.0{\pm}13.4\;{\mu}g/m^3$, respectively. The daily concentrations of the analyzed ions similarly showed a pronounced variation, although a difference between seasons existed. Among them, $SO_4^{2-}$, $NO_3^-$ and $NH_4^+$ were the most abundant ions in all seasons, contributing up to 32% of $PM_{10}$ and 39% of $PM_{2.5}$. The contribution of $SO_4^{2-}$ and $NO_3^-$ showed a seasonal variation, as $SO_4^{2-}$ was the highest during spring and summer and $NO_3^-$ was the highest during fall and winter. Non-seasalt $SO_4^{2-}$ and $NO_3^-$ were found to exist mainly as neutralized chemical components of $(NH_4)_2SO_4$ and $NH_4NO_3$ due to the high concentration of $NH_4^+$ in PM samples, which were a major form of airborne PM in all seasons. Seasonal characteristics of $PM_{10}$ and $PM_{2.5}$ in Iksan were described in relation to the temporal variations of daily concentration of PM and its inorganic ion species including inter-particle reactions.

On-stream Activity and Surface Chemical Structure of CoO2/TiO2 Catalysts for Continuous Wet TCE Oxidation (습식 TCE 분해반응에서 CoO2/TiO2 촉매의 반응활성 및 표면화학적 구조)

  • Kim Moon Hyeon;Choo Kwang-Ho
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.221-230
    • /
    • 2005
  • Catalytic wet oxidation of trichloroethylene (TCE) in water has been conducted using $TiO_2-supported$ cobalt oxides at $36^{\circ}C$ with a weight hourly space velocity of $7,500\;h^{-1}.\;5\%\;CoO_x/TiO_2$, prepared by using an incipient wetness technique, might be the most promising catalyst for the wet oxidation although it exhibited a transient behavior in time on-stream activity. Not only could the bare support be inactive for the wet decomposition reaction, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. XPS spectra of both fresh and used Co surfaces gave different surface spectral features for each $CoO_x,\;Co\;2P_{3/2}$ binding energy for Co species in the fresh catalyst appeared at 781.3 eV, which is very similar to the chemical states of $CoTiO_x$ such as $CO_2TiO_4\;and\;CoTiO_3$. The used catalyst exhibited a 780.3-eV main peak with a satellite structure at 795.8 eV. Based on XPS spectra of reference Co compound, the TCE-exposed Co surfaces could be assigned to be in the form of mainly $Co_3O_4$. XRD patterns for $5\%\;CoO_x/TiO_2$ catalyst indicated that the phase structure of Co species in the catalyst even before reaction is quite comparable to the diffraction lines of external $Co_3O_4$ standard. A model structure of $CoO_x$ present predominantly on titania surfaces would be $Co_3O_4$, encapsulated in thin-film $CoTiO_x$ species consisting of $Co_2TiO_4$ and $CoTiO_3$, which may be active for the decomposition of TCE in a flow of water.

Liquefaction and Saccharification of Tapioca Starch for Fuel Ethanol Production (연료용 알콜 생산을 위한 타피오카 전분의 액화 및 당화)

  • 김기호;박성훈
    • KSBB Journal
    • /
    • v.10 no.3
    • /
    • pp.304-316
    • /
    • 1995
  • For fuel alcohol production, enzymatic liquefaction and saccharification of tapioca starch by ${\alpha}$-amylase and glucoamylase were studied. The thermophilic ${\alpha}$-amylase Termamyl produced from Bacillus licheniformis gave a better liquefaction than the relalively low temperature enzyme BAN from B. subtilis. Oplimal temperature and pH with Termamyl were $90∼95^{\circ}C$ and 5.8, respectively. Minimal amount of Termamyl 240uc for a satisfactory liquefaction for a two-hour reaction was about 0.0125% (v/w) with respect to the mass of tapioca used. For saccharification experiments two enzymes, Novo AMG and Do-I1 enzymes were compared. The enzymatic activity of each enzyme was a little different depending on the substrate used and the latter was found to have a significant amount of ${\alpha}$-amylase activity. With Novo AMG optimal temperature was about $58^{\circ}C$ The pH optimum was 4.3 with maltose, however, with tapioca, no difference was observed between pH 4.3 and 5.7 which is a natural, unadjusted pH of liquefied tapioca. For 85% of completion of saccharification, it was necessary to use 0.0625% (v/w) of Novo AMG 400L for tapioca and to run the reaction for more than 10 hr, Packed volume of solid particles in tapioca slurry remained at around 30% during liquefaction and saccharification. This indicates that the removal of the solid particle before fermentation is not economically feasible at all, even though the solid particles make it very difficult to operate the bioreactor in a continuous mode with cell-recycle.

  • PDF

Ni0.5Zn0.4Cu0.1Fe2O4 Complex Ferrite Nanoparticles Synthesized by Chemical Coprecipitation Predicted by Thermodynamic Modeling

  • Kang, Bo-Sun;Park, Joo-Seok;Ahn, Jong-Pil;Kim, Kwang-Hyun;Tae, Ki-Sik;Lee, Hyun-Ju;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.231-237
    • /
    • 2013
  • Thermodynamic modeling of the $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ complex ferrite system has been adopted as a rational approach to establish routes to better synthesis conditions for pure phase $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ complex ferrite. Quantitative analysis of the different reaction equilibria involved in the precipitation of $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ from aqueous solutions has been used to determine the optimum synthesis conditions. The spinel ferrites, such as magnetite and substitutes for magnetite, with the general formula $MFe_2O_4$, where M= $Fe^{2+}$, $Co^{2+}$, and $Ni^{2+}$ are prepared by coprecipitation of $Fe^{3+}$ and $M^{2+}$ ions with a stoichiometry of $M^{2+}/Fe^{3+}$= 0.5. The average particle size of the as synthesized $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$, measured by transmission electron microscopy (TEM), is 14.2 nm, with a standard deviation of 3.5 nm the size when calculated using X-ray diffraction (XRD) is 16 nm. When $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ ferrite is annealed at elevated temperature, larger grains are formed by the necking and mass transport between the $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ ferrite nanoparticles. Thus, the grain sizes of the $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ gradually increase as heat treatment temperature increases. Based on the results of Thermogravimetric Analysis (TGA) and Differential Scanning Calorimeter (DSC) analysis, it is found that the hydroxyl groups on the surface of the as synthesized ferrite nanoparticles finally decompose to $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ crystal with heat treatment. The results of XRD and TEM confirmed the nanoscale dimensions and spinel structure of the samples.

Influence of Surfactants on Enhancing Transport of Bacteria in Geological Materials (지질매질체내에서 계면활성제가 박테리아 이동 증진에 미치는 영향)

  • Choi, Nag-Choul;Park, Seong-Jik;Kim, Song-Bae;Kim, Dong-Ju;Lee, Seong-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1017-1023
    • /
    • 2010
  • This study investigated the effect of surfactants (nonionic surfactant (Tween 20), biosurfactant) on enhancing transport of bacteria (Bacillus subtilis ATCC 6633) in geological materials. Column experiments were performed under various surfactant conditions with columns packed with quartz sand (particle size distribution: 0.5~2.0 mm, mean diameter: 1.0 mm). Bacterial mass recovery, sticking efficiency, and other parameters were quantified from breakthrough curves. Results indicate that bacterial attachment to sand surfaces increased considerably in the presence of mineral salt medium (MSM), especially at the inlet, which was due to the increase of ionic strength by MSM. It was observed that bacterial transport in sand columns was enhanced in the presence of surfactant. Results also show that simultaneous injection of both surfactant and MSM or pre-injection of surfactant was more effective in bacterial transport enhancement than after-injection of surfactant. This study suggests that transport of bacteria in geological materials could be influenced by surfactants and their injection methods.

Stimulation of Blood Flow Needs a Parallel Magnetic Field and Psycho-physics acupuncture

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.105-112
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, fur examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-l4}$m and then the converging $\pi$-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion, because of the $\pi$-rays' hindrances, near the nucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. Any magnet absorbs n-rays to S pole and sends out the $\pi$-rays from N pole. Proton are constructed with the closed n-rays quantum-mechanically. The crystallizing n-bonding makes two $\pi$-far infrared rays of one wave length between two protons if two $\pi$-rays are supplied to each proton. It is easily done for a $\pi$-ray to be absorbed to a proton if there is a parallel magnetic flow to the blood flow because a $\pi$-ray advances axially under a magnetic field and a proton looks like a sphere. A axially advancing disk-like $\pi$-ray can meet more easily the coming spheres than from the other directions. The blood crystals stimulate the autonomous nerves on the blood vessels during the flow by their mechanical sliding collisions. SM n-ray meridian therapy and SMACN $\pi$-ray meridian therapy show the stimulation of blood flow and also combinational experiment between SM $\pi$-ray meridian therapy and n-ray psycho-physics acupuncture shows more clearly that magnet is forcing to make $\pi$-rays absorbed to the nucleons.s.ons.

  • PDF

A Critical Note on the Electric Field in Direct and Alternating Current and Its Consciousness

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.98-104
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-14}$ m and then the converging $\pi$-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion, because of the $\pi$-rays'hindrances, nearthenucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. Conventional Concept of Electric Field must be extended in the case of the direct and alternating current. Conventional concept is based on coulomb's force while the electric potential in the direct and alternating current is from Gibb's free energy. And also conventional concept has not any consciousness with human being but the latters has a conscious sensibility. The cell emf is from the kinetic energy of the open $\pi$-rays flow through the conducting wire. The electric potential in alternating current is from that the trans-orbital moving of the induced change of magnetic field in the wire produces flows of open $\pi$-rays, which push the rotating electrons on the orbital and then make the current flow. Human consciousness can induce a resonance with the sensibility of the open $\pi$-rays in the electric measuring equipment. Specially treated acupunctures with Nasucon is for sending an acupunctural effect from one place to another via space by someone's will power.

  • PDF