• Title/Summary/Keyword: Particle Image velocimetry

Search Result 642, Processing Time 0.033 seconds

Airflow over low-sloped gable roof buildings: Wind tunnel experiment and CFD simulations

  • Cao, Ruizhou;Yu, Zhixiang;Liu, Zhixiang;Chen, Xiaoxiao;Zhu, Fu
    • Wind and Structures
    • /
    • v.31 no.4
    • /
    • pp.351-362
    • /
    • 2020
  • In this study, the impact of roof slope on the flow characteristics over low-sloped gable roofs was investigated using steady computational fluid dynamics (CFD) simulations based on a k-ω SST turbulence model. A measurement database of the flow field over a scaled model of 15° was created using particle image velocimetry (PIV). Sensitivity analyses for the grid resolutions and turbulence models were performed. Among the three common Reynolds-averaged Navier-Stokes equations (RANS) models, the k-ω SST model exhibited a better performance, followed by the RNG model and then the realizable k-ε model. Next, the flow properties over the differently sloped (0° to 25°) building models were determined. It was found that the effect of roof slope on the flow characteristics was identified by changing the position and size of the separation bubbles, 15° was found to be approximately the sensitive slope at which the distribution of the separation bubbles changed significantly. Additionally, it is suggested additional attention focused on the distributions of the negative pressure on the windward surfaces (especially 5° and 10° roofs) and the possible snow redistribution on the leeward surfaces.

On the Variation of the Boundary Layer as Hull Surface Roughness (선체 표면 거칠기가 경계층 변화에 미치는 영향)

  • Gim, Ok-Sok;Oh, Woo-Jun;Shon, Chang-Bae;Lee, Gyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.34 no.6
    • /
    • pp.429-434
    • /
    • 2010
  • The experimental study of the hull surface roughness on a developing turbulent boundary layer which exposed to a variety of operating environments were investigated by performing particle image velocimetry(PIV) in a circulating water channel. The Reynolds number based on the width of roughness was about Re=1000. the roughness elements used were periodically arranged two-dimensionally. the flow visualization, time-mean velocity fields and vorticity fields to measure the flow characteristics were obtained. The investigation shows that the vortex generation and its progress inside the walls. And the center of the vortex was located at the middle of the height of the surface roughness.

Effects of a Swirling and Recirculating Flow on the Combustion Characteristics in Non- Premixed Flat Flames

  • Jeong, Yong-Ki;Jeon, Chung-Hwan;Chang, Young-June
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.499-512
    • /
    • 2004
  • The effects of swirl intensity on non-reacting and reacting flow characteristics in a flat flame burner (FFB) with four types of swirlers were investigated. Experiments using the PIV method were conducted for several flow conditions with four swirl numbers of 0, 0.26, 0.6 and 1.24 in non-reacting flow. The results show that the strong swirling flow causes a recirculation, which has the toroidal structures, and spreads above the burner exit plane. Reacting flow characteristics such as temperature and the NO concentrations were also investigated in comparison with non-reacting flow characteristics. The mean flame temperature was measured as the function of radial distance, and the results show that the strong swirl intensity causes the mean temperature distributions to be uniform. However the mean temperature distributions at the swirl number of 0 show the typical distribution of long flames. NO concentration measurements show that the central toroidal recirculation zone caused by the strong swirl intensity results in much greater reduction in NO emissions, compared to the non-swirl condition. For classification into the flame structure interiorly, the turbulence Reynolds number and the Damkohler number have been examined at each condition. The interrelation between reacting and non-reacting flows shows that flame structures with swirl intensity belong to a wrinkled laminar-flame regime.

Non-Invasive Measurement of Shear Rates of Pulsating Pipe Flow Using Echo PIV (에코 PIV를 이용한 맥동 유동에서의 in vitro 전단률 측정 연구)

  • Kim, Hyoung-Bum;Chung, In-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1567-1572
    • /
    • 2004
  • Although accurate measurement of velocity profiles, multiple velocity vectors, and shear stress in arteries is important, there is still no easy method to obtain such information in vivo. This study shows the utility of combining ultrasound contrast imaging with particle image velocimetry (PIV) for non-invasive measurement of velocity vectors. The steady flow analytical solution and optical PIV measurements (for pulsatile flow) were used for comparison. When compared to the analytical solution, both echo PIV and optical PIV resolved the steady velocity profile well. Error in shear rate as measured by echo PIV (8%) was comparable to the error of optical PIV (6.5%). In pulsatile flow, echo PIV velocity profiles agreed well with optical PIV profiles. Echo PIV followed the general profile of pulsatile shear stress across the artery but underestimated wall shear at certain time points. These studies indicate that echo PIV is a promising technique for the non-invasive measurement of velocity profiles and shear stress.

A Study on the Flow Characteristics of Sirocco fan (씨로코팬의 유동특성에 관한 연구)

  • Lee, Duck-Gu;Kim, Geon-Il;Jung, Han-Byul;Sul, Jael-Lim;Lee, Heang-Nam;Park, Gil-Moon
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.200-204
    • /
    • 2005
  • The sirocco fan is used to get low noise, and it has been applied to a lot of industry field like the heat engine, the fluid instrument power plant, the food industry, environment industry etc... because there are not any problem even it is mixed with a any kind of liquid, gas, and solid. The flow characteristics in sirocco fan are investigated by PIV. The experiment using PIV measurement for Test section's flow characteristics acquired velocity distribution, .Condition : when sirocco fan in automobile air controller maximum 1450RPM, and a revolution is a variation (1)950RPM, (2)1100RPM, (3)1250RPM. The agreement a experiment shows the validity of this study and the results of this study would be useful to the engineers who design for the flow systems for heating, ventilation and air conditioning.

  • PDF

A Study on Unsteady Flow Characteristics in a Industrial Mixer with Hydrofoil Types Impeller by PIV (PIV에 의한 산업용 교반기내 Hydrofoil 임펠러 형태에 따른 비정상 유동특성에 관한 연구)

  • Kim, Beom-Seok;Kim, Jeong-Hwan;Kang, Mun-Hu;Kim, Jin-Gu;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.863-868
    • /
    • 2003
  • Mixers are used in various industrial fields where it is necessary to intimately mix two reactants in a short period of time. However, despite their widespread use, complex unsteady flow characteristics of industrial mixers are not systematic investigated. The present study aimed to clarify unsteady flow characteristics induced by various impellers in a tank. Impellers arc hydrofoil turbine and neo-hydrofoil turbine types. A high speed CCD camera and an Ar-Ion laser for illumination were adopted to clarify the time-dependent flow characteristics of the mixers. The rotating speed of impellers increased from 6Hz to 60Hz by 6Hz, The maximum velocity around neo-hydrofoil impeller is higher than the hydrofoil type impeller. These two types of turbine shows that typical flow characteristics of axial turbine and suitable for mixing high-viscosity materials.

  • PDF

Wake Characteristics of Vane-Type Vortex Generators in a Flat Plate Laminar Boundary Layer

  • Shim, HoJoon;Jo, Young-Hee;Chang, Kyoungsik;Kwon, Ki-Jung;Park, Seung-O
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.325-338
    • /
    • 2015
  • Experimental and numerical investigations were conducted to identify the wake characteristics downstream of two vane-type vortex generators over laminar flat plate boundary layer. Experimental study was carried out by using the stereoscopic particle image velocimetry. To describe the flow field around the vortex generator in detail, numerical study was performed. We considered two different planform shapes of vortex generator: triangular and rectangular shape. The height of the generator was chosen to be about the boundary layer thickness at the position of its installation. Two different lengths of the generator were chosen: two and five times the height. Wake measurements were carried out at three angles of attack for each configuration. Wake characteristics for each case such as overall vortical structure, vorticity distribution, and location of vortex center with downstream distance were obtained from the PIV data. Wake characteristics, as expected, were found to vary strongly with the geometry and angle of attack so that no general tendency could be deduced. Causes of this irregular tendency were explained by using the results of the numerical simulation.

Measurement of Flow Field Downstream of Polyurethane Artificial Heart Valve with Floating Valve Leaflet (열림판이 지지대에 고정되지 않은 폴리우레탄 인공판막 하류의 유동장 측정)

  • Kim, J.K.;Sung, J.;Chang, J.K.;Min, B.G.;Yoo, J.Y.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.247-248
    • /
    • 1998
  • The effect of unattached valve leaflet on flow field downstream of a floating and flapping polyurethane heart valve prosthesis was investigated. With a triggering system and a time-delay circuit the instantaneous velocity field downstream of the valve was measured by particle image velocimetry (PIV) in conjunction with the opening posture of a flexible valve leaflet during a cardiac cycle. Reynolds shear stress distribution was calculated from the velocity fields and wall shear stress was directly measured by hot-film anemometry (HFA). The floating motion of the valve leaflet resulted in the reduction of pressure drop and recirculating flow region downstream of the valve.

  • PDF

Flow visualization of PM preprocessing system using the small scale gascyclone precipitator (소형 가스사이클론 집진장치를 이용한 PM 전처리 시스템의 유동 가시화)

  • YANG, Yongsu;LEE, Kyounghoon;JO, Hyeonjeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.3
    • /
    • pp.263-270
    • /
    • 2016
  • This study is aimed to design the mechanical gascyclone precipitator with an outstanding collection efficiency as one of ways to reduce exhaust gas of small-scale vessels. It estimated fine particles generated from diesel engines which has become one of the biggest environmental issues currently. Specifically, it quantitatively analyzed the flowing process from the cyclone gas exit; a duct via part to the collecting part of Cylindrical lower using DPIV (Digital Particle Image Velocimetry). Since the gas inlet height part became wider the previous theoretical dimensions, internal fluid characteristics of cyclone where the speed of internal swirl had been slow were investigated by temporary streamline of fine particles at $14-20{\mu}m$. The results showed that collecting efficiency was three times higher than the conical type utilized previously. In addition, this study supplemented imprecision problems from the previous theoretical equation and CFD interpretation with an experimental method. It also provided a basic data to design the cyclone precipitator by size of diesel engines for vessels.

MIXING CONDITIONS WITH SPRAY-JET INTERACTION FOR EFFECTIVE SOOT REDUCTION IN DIESEL COMBUSTION

  • Chikahisa, Takemi;Hishinuma, Yukio;Ushida, Hirohisa
    • International Journal of Automotive Technology
    • /
    • v.3 no.1
    • /
    • pp.17-26
    • /
    • 2002
  • The authors have reported significant reductions in particulate emissions of diesel engines by generating strong turbulence during the combustion process. This study aims to identify optimum conditions of turbulent mixing for effective soot reduction during combustion. The experiments were conducted with a constant volume combustion vessel equipped with abet-generating cell, in which a small amount of fuel is injected during the combustion of the main spray. The jet of burned gas from the cell impinges the main flame, causing changes In the mixing of fuel and air. Observation was made for a variety combinations of distances between spray nozzle and Jet orifice at different directions of impingement. It Is shown that compared with the case without Jet flame soot decreases when the jet impinges. When the jet is very close to the flame, it penetrates the soot cloud and causes little mixing. There were no apparent differences in the combustion duration when the direction of impingement was varied, although the mechanisms of soot reduction seemed different. An analysis of local turbulent flews with PIV (Particle image Velocimetry) showed the relationship between the scale of the turbulence and the size of the soot cloud.