• Title/Summary/Keyword: Particle Image velocimetry

Search Result 642, Processing Time 0.033 seconds

Mixed Convection between Inclined Parallel Plates with different Temperatures (온도차를 갖는 경사진 평행평판 내의 혼합대류 열전달)

  • Piao, R.L.;Kwon, O.B.;Bae, D.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.33-39
    • /
    • 2005
  • Experiments are performed to study the mixed convection flow and heat transfer in an inclined parallel plates with the upper part cooled and the lower part heated uniformly. The Reynolds number ranges from $4.0{\times}10^{-3}\;to\;6.2{\times}10^{-2}$, the angle of inclination, ${\theta}$, from 0 to 45 degree from the horizontal line, and Pr of the high viscosity fluid is 909. In this paper, the PIV(Particle image velocimetry) with TLC(Thermo-sensitive liquid crystal) tracers is used for visualizing and analysis. This method allows simultaneous measurement of velocity and temperature field at a given instant of time. Quantitative data of the temperature and velocity are obtained by applying the color-image processing to a visualized image, and neural network is applied to the color-to-temperature calibration. This paper describes the methods, and presents the quantitative visualization of mixed convection. From this study, it is found that the flow pattern can be classified into three patterns which are affected by Reynolds number and the angle of inclination.

  • PDF

A Study on the Visualization and Characteristics of Mixed Convection between Inclined Parallel Plates Filled with High Viscous Fluid (경사진 평행평판 내 고 점성유체의 혼합대류 열전달 특성 및 가시화에 관한 연구)

  • Piao, Ri-Long;Bae, Dae-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.9
    • /
    • pp.698-706
    • /
    • 2006
  • Experiment and numerical calculation have been peformed to investigate mixed convection heat transfer between inclined parallel plates. Particle image velocimetry (PIV) with thermo-sensitive liquid crystal (TLC) tracers is used for visualizing and analysis. This method allows simultaneous measurement of velocity and temperature fields at a given instant of time. Quantitative data of the temperature and velocity are obtained by applying the color-image processing to a visualized image, and neural network is applied to the color-to-temperature calibration. The governing equations are discretized using the finite volume method. The results are presented for the Reynolds number ranges from 0.004 to 0.062, the angle of inclination, ${\Theta}$, from 0 to 45 degree and Prandtl number of the high viscosity fluid is 909. The results show velocity, temperature and mean Nusselt numbers distributions. It is found that the periodic flow of mixed convection between inclined parallel plates is shown at $0^{\circ}{\leq}{\Theta}<30^{\circ}$, Re<0.062, and the flow pattern can be classified into three patterns which depend on Reynolds number and the angle of inclination. The minimum Nusselt numbers occur at Re=0.05 regardless of the angle of inclination.

Experimental Investigation on Flame Structure and Emission Characteristics in a Lean Premixed Model Gas Turbine Combustor (희박 예혼합 모형 가스터빈 연소기의 화염구조와 배기특성에 관한 실험적 연구)

  • Lee, Jong-Ho;Kim, Dae-Hyun;Jeon, Hung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.425-432
    • /
    • 2004
  • The objective of this study is a qualitative comparison between line-integrated OH chemiluminescence(OH$\^$*/) image and its Abel inverted image to investigate the flame structure at different phase of the oscillating pressure field. PIV(Particle Image Velocimetry) measurements were conducted under non-reacting conditions to see the global flow structure and NOx emission was measured to investigate the effect of fuel-air premixing on combustion instability and emission characteristics. Experiments were carried out in an atmospheric pressure, laboratory-scale dump combustor operating on natural gas. Combustion instabilities in present study exhibited a longitudinal mode with a dominant frequency of ∼341.8㎐, which corresponded to a quarter wave mode of combustor. Heat release and pressure waves were in-phase when instability occurred. Results gave an insight about the location where the strong coherence of pressure and heat release existed. Also an additional information on active control to suppress the combustion instabilities was obtained. For lean premixed combustion, strong correlation between OH$\^$*/ and NOx emissions was expected largely due to the exponential dependence of thermal NOx mechanism on flame temperature.

Development of 3-D Stereo PIV by Homogeneous Coordinate System (호모지니어스 좌표계를 이용한 3차원 스테레오 PIV 알고리듬의 개발)

  • Kim, Mi-Young;Choi, Jang-Woon;Nam, Koo-Man;Lee, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.736-743
    • /
    • 2003
  • A process of 3-D particle image velocimetry, called here, as '3-D stereo PIV' was developed for the measurement of an illuminated slied section field of 3-D complex flows. The present method includes modeling of camera by a calibrator based on the homogeneous coordinate system, transfromation of the oblique-angled image to the right-angled image, identification of 2-D velocity vectors by 2-D cross-correlation equation, stereo matching of 2-D velocity vectors of two cameras, accurate calculation of 3-D velocity vectors by homogeneous coordinate system, removal of error vectors by a statistical method followed by a continuity equation criterior, and finally 3-D animation as the post processing. An experimental system was also used for the application of the proposed method. Three analog CCD cameras and an Argon-Ion Laser(300mW) for illumination were adopted to capture the wake flow behind a bluff obstacle.

Experimental Investigation on Flame Structure and Emission Characteristics in a Lean Premixed Model Gas Turbine Combustor (희박 예혼합 모형 가스터빈 연소기의 화염구조와 배기특성에 관한 실험적 연구)

  • Moon, Gun-Feel;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.356-361
    • /
    • 2003
  • The objective of this study is a qualitative comparison between line-integrated OH chemiluminescence ($OH{\ast}$) image and its Abel inversion image at different phase of the oscillating pressure field. PIV(Particle Image Velocimetry) measurements were conducted under non-reacting conditions to see the global flow structure. Also NOx emission was measured to investigate the effect of fuel-air premixing on combustion instability and emission characteristics. Experiments were carried out in an atmospheric pressure, laboratory-scale dump combustor operating on natural gas. Combustion instabilities in present study exhibited a longitudinal mode with a dominant frequency of ${\sim}341.8$ Hz, which corresponded to a quarter wave mode of combustor. Heat release and pressure waves were in-phase when instability occurred. Results gave an insight about the location where the strong coherence of pressure and heat release existed. Also an additional information on active control to suppress the combustion instabilities was obtained. For lean premixed combustion, strong correlation between $OH{\ast}$ and NOx emissions was expected largely due to the exponential dependence of thermal NOx mechanism on flame temperature.

  • PDF

Development of 3-D Stereo PIV (3차원 스테레오 PIV 개발)

  • Kim Mi-Young;Choi Jang-Woon;Nam Koo-Man;Lee Young-Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.19-22
    • /
    • 2002
  • A process of 3-D particle image velocimetry, called here, as '3-D stereo PIV' was developed for the measurement of a section field of 3-D complex flows. The present method includes modeling of camera by a calibrator based on the homogeneous coordinate system, transfromation of oblique-angled image to transformed image, identification of 2-D velocity vectors by 2-D cross-correlation equation, stereo matching of 2-D velocity vectors of two cameras, accurate calculation of 3-D velocity vectors by homogeneous coordinate system and finally 3-D animation as the post processing. In principle, as two frame images only are necessary for the single instantaneous analysis of a section field of 3-D flow, more effective vectors are obtainable contrary to the previous multi-frame vector algorithm. An experimental system was also used for the application of the proposed method. Three analog CCD cameras and an Argon-Ion Laser(300mW) for illumination were adopted to capture the wake flow behind a bluff obstacle.

  • PDF

Development of a Camera Self-calibration Method for 10-parameter Mapping Function

  • Park, Sung-Min;Lee, Chang-je;Kong, Dae-Kyeong;Hwang, Kwang-il;Doh, Deog-Hee;Cho, Gyeong-Rae
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.183-190
    • /
    • 2021
  • Tomographic particle image velocimetry (PIV) is a widely used method that measures a three-dimensional (3D) flow field by reconstructing camera images into voxel images. In 3D measurements, the setting and calibration of the camera's mapping function significantly impact the obtained results. In this study, a camera self-calibration technique is applied to tomographic PIV to reduce the occurrence of errors arising from such functions. The measured 3D particles are superimposed on the image to create a disparity map. Camera self-calibration is performed by reflecting the error of the disparity map to the center value of the particles. Vortex ring synthetic images are generated and the developed algorithm is applied. The optimal result is obtained by applying self-calibration once when the center error is less than 1 pixel and by applying self-calibration 2-3 times when it was more than 1 pixel; the maximum recovery ratio is 96%. Further self-correlation did not improve the results. The algorithm is evaluated by performing an actual rotational flow experiment, and the optimal result was obtained when self-calibration was applied once, as shown in the virtual image result. Therefore, the developed algorithm is expected to be utilized for the performance improvement of 3D flow measurements.

Development of Single-Frame PIV Velocity Field Measurement Technique Using a High Resolution CCD Camera (고해상도 CCD카메라를 이용한 Single-Frame PIV 속도장 측정기법 개발)

  • Lee, Sang-Joon;Shin, Dae-Sig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.21-28
    • /
    • 2000
  • Although commercial PIV systems have been widely used for the non-intrusive velocity field measurement of fluid flows, they are still under development and have considerable room for improvement. In this study, a single-frame double-exposure PIV system using a high-resolution CCD camera was developed. A pulsed Nd:Yag laser and high-resolution CCD camera were synchronized by a home-made control circuit. In order to resolve the directional ambiguity problem encountered in the single-frame PIV technique, the second particle image was genuinely shifted in the CCD sensor array during the time interval dt. The velocity vector field was determined by calculating the displacement vector at each interrogation window using cross-correlation with 50% overlapping. In order to check the effect of spatial resolution of CCD camera on the accuracy of PIV velocity field measurement, the developed PIV system with three different resolution modes of the CCD camera (512 ${\times}$ 512, lK ${\times}$ IK, 2K ${\times}$ 2K) was applied to a turbulent flow which simulate the Zn plating process of a steel strip. The experimental model consists of a snout and a moving belt. Aluminum flakes about $1{\mu}m$ diameter were used as scattering particles for the liquid flow in the zinc pot and the gas flow above the zinc surface was seeded with atomized olive oil with an average diameter of 1-$3{\mu}m$. Velocity field measurements were carried out at the strip speed $V_s$=1.0 m/s. The 2K ${\times}$ 2K high-resolution PIV technique was significantly superior compared to the smaller pixel resolution PIV system. For the cases of 512 ${\times}$ 512 and 1K ${\times}$ 1K pixel resolution PIV system, it was difficult to get accurate flow structure of viscous flow near the wall and small vortex structure in the region of large velocity gradient.

Three-Dimensional Flow Visualization of Pulsatile Flow in a Branching Model using the PIV System (PIV를 이용한 분지관모델내 3차원 맥동유동의 가시화)

  • Sung, Sun-Kyung;Cho, Min-Tae;Roh, Hyung-Woon;Suh, Sang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.748-753
    • /
    • 2001
  • The objective of the present study is to visualize the pulsatile flow fields by using three-dimensional computer simulation and the PIV system. A closed flow loop system was built for the steady and unsteady experiments. The Harvard pulsatile pump was used to generate the pulsatile pressure and velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow field. Two consecutive particle images were captured by a CCO camera for the image processing at several cross section. The range validation and the area interpolation methods were used to obtain the final velocity vectors with high accuracy. The finite volume predictions were used to analyze three-dimensional flow patterns in the bifurcation model. The results of the PIV experiment and the computer simulation are in good agreement and the results show the recirculation zones and formation of the paired secondary flow distal to the apex of the bifurcated model. The results also show that the branch flow is pushed strongly to the inner wall due to the inertial force effect and helical motions are generated as the flow proceeds toward the outer wall.

  • PDF

A Study on the Flow Characteristics of Desktop Personal Computer by In-Out Fan (흡.배기 팬에 의한 Desktop Personal Computer 내부의 유동특성에 관한 연구)

  • Lee, Haeng-Nam;Park, Gil-Moon;Jung, Han-Byul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.665-671
    • /
    • 2007
  • The purpose of this study is to find out a flow characteristics required by the design of a computer case and to provide information about the preliminary data of cooling efficiency of CPU and a flow inside of a case. We examined a flow characteristic-suction a tracing particle occurred from a surge tand installed at an inlet into a computer case and moving it to a exit duct-experimentally by using PIV. The experimental device was consists of a fan inflowing and discharging the air into the computer case and a slot installed with a CPU cooling ran add-on, and analyzed the data of Re-stress distribution, velocity distribution, and kinetic energy distribution. This research will make a great contribution to improvement of the efficiency and performance of notebook, workstation, server, and all the design of electronic devices using large scale integrated(LSI) as well as usual computers.