• Title/Summary/Keyword: Particle Image Thermometry

Search Result 3, Processing Time 0.017 seconds

A Study on the Analysis of Temperature Field of Bubbly Flow Using Thermo-sensitive Liquid Crystals (감온액정을 이용한 기포유동의 온도장 해석에 관한 연구)

  • Bae, Dae-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1572-1578
    • /
    • 2003
  • Particle Image Thermometry(PIT) with liquid crystal tracers is used for visualizing and analysis of the bubbly flow in a vertical temperature gradient. Quantitative data of the temperature were obtained by applying the color-image processing to a visualized image, and neural-network was applied to the color-to-temperature calibration. This paper describes the method, and presents the transient mixing temperature patterns of the bubbly flow.

Heat transfer and flow characteristics of sweeping jet issued from rectangular nozzle with thin plate (박판이 부착된 사각노즐에서 분사되는 Sweeping jet의 유동 및 열전달 특성)

  • Kim, Donguk;Jung, Jae Hoon;Seo, Hyunduk;Kim, Hyun Dong;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.58-66
    • /
    • 2019
  • This study investigated heat transfer and flow characteristics of a sweeping jet issued from a rectangular nozzle with a thin plate. A thin vertical aluminum plate was attached on outlet of fluidic oscillator to increase velocity of central area with Coanda effect and enhance heat transfer performance. From visualization and PIV experiments, sweeping jet with a thin plate has larger velocity distribution in center region than that of the normal sweeping jet while oscillating frequency is similar as the normal one. Thermographic phosphor thermometry method was used to visualize the temperature field and Nu distribution of plate with impinging sweeping jet with thin plate. Four Reynolds numbers and three jet-to-wall distances were selected as parameters. It is found that heat transfer performance in the low jet-to-wall spacing was enhanced as the cooled area was expanded. However, when the jet-to-wall spacing became greater than 8dh, heat transfer performance became similar due to reduced impinging velocity.

Experiment on water turbulent natural convection for safety improvement of nuclear power plant (원자력발전소 안전성 평가 향상을 위한 물 자연대류 검증 실험)

  • Kim, Donghyuk;Ryu, Nayoung;Kim, Man-Bae;Park, Chang-Yong;Kim, Jungwoo
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.3
    • /
    • pp.46-50
    • /
    • 2016
  • The objective of the present study is to perform experiments for water filled cavity heated and cooled from the side at $Ra=8.5{\times}108$. This experiment can provide validation database of the standard k-${\varepsilon}$ turbulence model for single-phase turbulent natural convection which has been regarded as one of the important phenomena in nuclear safety. For the natural convection inside a cavity, temperature and velocity were obtained by thermometry and PIV (Particle Image Velocimetry) methods. These results would be used for validation of standard k-${\varepsilon}$ turbulence model.