• Title/Summary/Keyword: Particle Image Processing

Search Result 185, Processing Time 0.023 seconds

Atomization of Liquid Via a Combined System of Air Pressure and Electric Field (공기 압력과 전기장이 접목된 액적 분무에 관한 연구)

  • Hwang, Sangyeon;Seong, Baekhoon;Byun, Doyoung
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.2
    • /
    • pp.9-12
    • /
    • 2014
  • Conventional electrospray and air spray methods have the vulnerabilities of limited flow rate (throughput) and droplet size, respectively. Since high throughput with uniform size of droplet is required for various applications, an improved technique should be adopted. Here, we report a combined system of an air pressure and an electric field and evaluate the atomization performance of it. The air flow allowed applying high flow rate range and the electric field reinforced the atomization process to generate fine droplets. A correlation between two forces was investigated by comparing the droplet produced by each method. The atomized droplets were measured and visualized by image processing and a particle image velocimetry (PIV). The quantitative results were achieved from the parametric space and the effect of both forces was analyzed. The motion of charged droplets followed the outer electric field rather than the complex vortex in the shear layer so that the droplets accelerated directly toward the grounded collector.

Experimental research on blood sucking phenomena of a female mosquito (암모기 흡혈과정에 대한 실험적 연구)

  • Kim, Bo-Heum;Lee, Jung-Yeop;Lee, Sang-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.105-106
    • /
    • 2008
  • As a carrier of malaria and sneak of blood, mosquitoes are an unpleasant insect. However, there are several unknown natural secretes related with mosquitoes. Among them, we focused on the blood sucking process of a female mosquito. The main objective of this study is to understand the mosquito's blood sucking mechanism that can be used to resolve the problem encountered in the injection or transport of infinitesimal biological fluids in a micro-chip. At first, the velocity fields of blood-sucking flow in a proboscis were measured using a micro-particle image velocimetry (PIV) technique. The velocity signals of flow in the proboscis show periodic variation. This seems to be resulted from the beating of the pharyngeal pump which works as driving power. To analyze the pumping mechanism, the temporal variation of the pharyngeal pump was visualized using the synchrotron X-ray micro-imaging technique. The volume variation was estimated by the help of digital image processing techniques. Once the main mechanism of blood sucking process was found, a effective micro-pumping system with high efficiency would be developed in near future.

  • PDF

Denoising PIV velocity fields and improving vortex identification using spatial filters (공간 필터를 이용한 PIV 속도장의 잡음 제거 및 와류 식별 개선)

  • Jung, Hyunkyun;Lee, Hoonsang;Hwang, Wontae
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.48-57
    • /
    • 2019
  • A straightforward strategy for particle image velocimetry (PIV) interrogation and post-processing has been proposed, aiming at reducing errors and clarifying vortex structures. The interrogation window size should be kept small to reduce bias error and improve spatial resolution. A spatial filter is then applied to the velocity field to reduce random error and clarify flow structure. The performance of three popular spatial filters were assessed: box filter, median filter, and local quadratic polynomial regression filter. In order to quantify random uncertainty, the image matching (IM) method is applied to an experimental dataset of homogeneous and isotropic turbulence (HIT) obtained by 2D-PIV. We statistically analyze the uncertainty propagation through the spatial filters, and verify the reduction in random uncertainty. Moreover, we illustrate that the spatial filters help clarify vortex structures using vortex identification criteria. As a result, PIV random uncertainty was reduced and the vortex structures became clearer by spatial filtering.

A CPU-GPU Hybrid System of Environment Perception and 3D Terrain Reconstruction for Unmanned Ground Vehicle

  • Song, Wei;Zou, Shuanghui;Tian, Yifei;Sun, Su;Fong, Simon;Cho, Kyungeun;Qiu, Lvyang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1445-1456
    • /
    • 2018
  • Environment perception and three-dimensional (3D) reconstruction tasks are used to provide unmanned ground vehicle (UGV) with driving awareness interfaces. The speed of obstacle segmentation and surrounding terrain reconstruction crucially influences decision making in UGVs. To increase the processing speed of environment information analysis, we develop a CPU-GPU hybrid system of automatic environment perception and 3D terrain reconstruction based on the integration of multiple sensors. The system consists of three functional modules, namely, multi-sensor data collection and pre-processing, environment perception, and 3D reconstruction. To integrate individual datasets collected from different sensors, the pre-processing function registers the sensed LiDAR (light detection and ranging) point clouds, video sequences, and motion information into a global terrain model after filtering redundant and noise data according to the redundancy removal principle. In the environment perception module, the registered discrete points are clustered into ground surface and individual objects by using a ground segmentation method and a connected component labeling algorithm. The estimated ground surface and non-ground objects indicate the terrain to be traversed and obstacles in the environment, thus creating driving awareness. The 3D reconstruction module calibrates the projection matrix between the mounted LiDAR and cameras to map the local point clouds onto the captured video images. Texture meshes and color particle models are used to reconstruct the ground surface and objects of the 3D terrain model, respectively. To accelerate the proposed system, we apply the GPU parallel computation method to implement the applied computer graphics and image processing algorithms in parallel.

Performance Evaluation of Fine-Dust Blocking Effect of Functional Clothing (미세먼지 차단 기능성 의류 제품의 성능 평가에 관한 연구)

  • Seok-Ju, Hwang;Chang-Hoon, Lee;Jin-Kyung, Kwon;Young-Sil, Kim;Eun-Jin, Choi;Da-Jin, Kim;Min, Kim;Se-Jin, Yook
    • Particle and aerosol research
    • /
    • v.18 no.4
    • /
    • pp.137-145
    • /
    • 2022
  • As many studies on the harmfulness of fine dust have been reported, awareness of its seriousness is spreading. Recently, interest in indoor air quality as well as air pollution is increasing, and research on measures to block fine dust flowing into the room from the outside is being conducted. The clothing company is launching functional clothing to prevent fine dust attached to clothing from entering the room through outdoor activities. However, it is difficult to confirm whether there is actually fine-dust blocking performance, and there is no evaluation standard. In this study, the contamination rate caused by fine dust was quantitatively compared through image processing after contamination of the outer fabric for 4 types of commercially available functional clothing with fine-dust blocking effect. The difference in particle contamination according to the material of the outer fabric was analyzed by comparing the surface resistance, and it was found that the higher the surface resistance of the outer fabric material, the more fine dust was attached. The analysis method of this study is expected to be able to quantitatively compare and evaluate the fine-dust blocking performance of functional clothing.

Optimization-based humanoid robot navigation using monocular camera within indoor environment

  • Han, Young-Joong;Kim, In-Seok;Hong, Young-Dae
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.446-457
    • /
    • 2018
  • Robot navigation allows robot mobility. Therefore, mobility is an area of robotics that has been actively investigated since robots were first developed. In recent years, interest in personal service robots for homes and public facilities has increased. As a result, robot navigation within the home environment, which is an indoor environment, is being actively investigated. However, the problem with conventional navigation algorithms is that they require a large computation time for their building mapping and path planning processes. This problem makes it difficult to cope with an environment that changes in real-time. Therefore, we propose a humanoid robot navigation algorithm consisting of an image processing and optimization algorithm. This algorithm realizes navigation with less computation time than conventional navigation algorithms using map building and path planning processes, and can cope with an environment that changes in real-time.

Aggregation of Nanoparticles Using a Unipolar Charging Technique (단극하전을 이용한 나노입자 응집성장 제어)

  • Park, Hyung-Ho;Kim, Sang-Soo;Chang, Hyunk-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.46-53
    • /
    • 2003
  • Effects of electric force on the morphology and growth of aggregates were studied experimentally. Nano-sized NaCl particles were supplied to a flame to perform the unipolar charging state. This electric precursor did not modify a temperature profile of the flame. The morphology of aggregates was measured by TEM image processing technique and the light scattering technique. In the unipolar charged state, the fractal dimension of aggregates was smaller than that of' the electrically neutral state. This result was in good agreement with our previous numerical simulations.

A study on the effect of a underbody shape of rear part of a vehicle on pressure distribution of downstream using PIV (디지털 화상처리를 이용한 자동차 후부의 하면형상 이 압력분포에 미치는 영향)

  • Baek, Tae-Sil;Cho, Ki-Hyon;aek, Yee;Song, Dong-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.29-36
    • /
    • 2000
  • In order to reduce a aerodynamic drag of the rear, body, effects of rear lower end configuration of a vehicles were investigated by measuring the pressure distribution, visual flow phenomena by the use of digital image processing technique. The use of flow visualization in recent years has improved the general understanding of structure of complex flow and has yielded valuable information for analyzing fluid flow. As the results, it was found that the shape of rear lower part vehicles not only effected on the pressure distribution of the rear part of the vehicle but also difference of the flow phenomena.

  • PDF

Echo-PIV: in vivo Flow Measurement Technique (에코 PIV: in vivo 유동 측정기법)

  • kim Hyoung-Bum;Hertzberg Jean;Shandas Robin
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.26-35
    • /
    • 2005
  • The combination of ultrasound echo images with digital particle image velocimetry (DPIV) method has resulted in a two-dimensional, two-component velocity field measurement technique appropriate for opaque flow conditions including blood flow in clinical applications. Advanced PIV processing algorithms including an iterative scheme and window of offsetting were used to increase spatial resolution. The optimum concentration of the ultrasound contrast agent used for seeding was explored. Velocity validation tests in fully developed laminar pipe flow and pulsatile flow showed good agreement with both optical PIV measurements and the known analytic solution. These studies indicate that echo PIV is a promising technique for the non-invasive measurement of velocity profiles and shear stress.

  • PDF

Visualization of the Slurry Flow-Field during Chemical Mechanical Polishing by PIV (PIV를 이용한 Chemical Mechanical Polishing 공정 중의 연마용액 유동흐름 측정)

  • Shin Sanghee;Kim MunKi;Yoon Youngbin;Koh Young-Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.48-51
    • /
    • 2004
  • Chemical Mechanical Polishing(CMP) is popularly used in production of semiconductor because of large area polishing ability probability of improvement for more integrated circuit. However, present CMP processing causes some non-uniformity errors which can be critical for highly integrated circuit. Previous studies predict that flow-field of slurry during CMP can create non-uniformity, but no quantitative measurement has conducted. In this study, using PIV, slurry velocity flow-field during CMP is measured by changing the ratio of RPM of pad and carrier with tuned PIV system adequate for small room in CMP machine and Cabot's non-groove pad Epad-A100. The result show that velocity of slurry is majorly determined by pad-rpm and the ratio of between carrier and pad rpm make some changes in streamlines.

  • PDF