• Title/Summary/Keyword: Particle Distribution

Search Result 2,802, Processing Time 0.031 seconds

Quantitative Analysis of Microplastics in Coastal Seawater of Taean Peninsula using Fluorescence Measurement Technique (형광측정기법을 이용한 태안반도 연안 표층수의 미세플라스틱 정량분포 스크리닝)

  • Un-Ki Hwang;Hoon Choi;Ju-Wook Lee;Yun-Ho Park;Wonsoo Kang;Moonjin Lee
    • Journal of Marine Life Science
    • /
    • v.8 no.1
    • /
    • pp.68-77
    • /
    • 2023
  • In this study, we investigated the quantitative distribution of microplastics in the surface seawater at 8 points near the Taean Peninsula using fluorescence staining. The study revealed a detection range of microplastics from 0 to 360.5 particles/l, with an average of 149.7 ± 46.0 particles/l. When classifying the microplastics by size, it was found that particles smaller than 50 ㎛ were dominant, although there were differences at Site 3. Moreover, it was not possible to identify clear correlations when comparing the number of microplastics based on collection area and particle size. Various physical and chemical factors, including plastic material, dynamic ocean conditions (such as currents, wind, waves, tides), geological characteristics (topography, slope), sediment materials including coastal organisms, human activities (fishing, development, tourism), and weather conditions (floods, rainfall), affect the behavior of microplastics. Therefore, future efforts should focus on standardizing quantitative analysis methods and conducting fundamental research on microplastic monitoring, including the analysis of environmental factors.

Indoor PM2.5 Concentration Distribution and Health Risk Assessment according to the Implementation of a Seasonal Management System (미세먼지 계절관리제 시행 여부에 따른 실내 PM2.5 농도 분포 및 노출에 따른 건강위해성 평가)

  • Shin-Young Park;Dann-Ki Yoon;Hyeok Jang;Sung Won Yoon;Cheol-Min Lee
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.4
    • /
    • pp.218-227
    • /
    • 2023
  • Background: Since 2019, the Ministry of Environment has implemented a seasonal fine dust management system from December to March, targeting high PM2.5 levels with the aim of reducing PM2.5 concentrations and protecting public health. The focus of improving the seasonal management system lies in the atmospheric PM2.5 levels. Considering the primary goal of protecting public health, it is necessary to analyze the policy effects from an exposure perspective rather than a concentration-based approach. Objectives: This study aims to quantitatively assess the improvement of indoor PM2.5 levels and the health impacts of the seasonal management system by comparing the periods before and during its implementation in residential environments. Methods: PM2.5 concentrations within residential environments in a metropolitan area were measured using an optical particle counter (IAQ-C7, K-weather, Ltd, Korea) at one-minute intervals during the pre-implementation period (November 21~25, 2022) and during the implementation period (December 19~23, 2022). Based on the measured PM2.5 concentrations, a quantitative evaluation of cancer and mortality risks was conducted according to age and gender. Results: The results of comparing indoor and outdoor PM2.5 concentrations before and during the implementation of the seasonal management system showed a decrease of approximately 56.6% and 47.9%, respectively. Health risk assessments revealed that both the safety-limit-based and safety-target-based Hazard Quotients (HQ) exceeded the threshold of 0.1 for children under 19 years of age, both before and after the implementation. The mortality risk decreased by approximately 47.9% after the implementation, with children aged 0-9 showing the highest mortality risk at 0.9%. Conclusions: The findings of this study confirmed the positive health impacts of the seasonal management system across all age groups, particularly children under 19 who are more vulnerable to fine dust exposure.

A Report on Patterned Ground in the Baekdusan (백두산 일대에 나타나는 구조토 보고)

  • CHOI, In-Sook;SEONG, Yeong Bae;KIM, Jong Wook;PARK, Seung-Phil;LI, Chun Jing
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.1
    • /
    • pp.59-72
    • /
    • 2010
  • This study is based on the observation on the patterned ground found in the northern part of the Baekdusan during two fieldtrips of 2008 summer. The patterned grounds are found in two areas-Dalmun and Socheonji. The patterned ground found around Dalmun are well-sorted, having fine materials in the center and coarse (boulder size) materials in the rim, and stretching in the form of stairs. Meanwhile, the types of patterned ground found around Socheonji are various, including polygon, stripe, and circular patterns. The particle size analysis and morphological analysis of comprising materials are carried out only for the patterned ground of Socheonji. The mean short and long axis of the patterned grounds are 91cm and 163cm, respectively. The distribution pattern of material size from the most samples increase toward the rim, indicating the patterned grounds are well-sorted. The comprising materials are dominated by silt, which is very susceptible for freeze-thaw cycle. The lower ratio of clay (low less than 10%), suggests that physical weathering is more dominant rather than chemical weathering. The involution structure found in the vertical section of the patterned grounds is likely to have formed by active cryoturbation which is one of the dominant geomorphic processes in the periglacial environments like the study area.

A Study on Earth Pressure Properties of Granulated Blast Furnace Slag Used as Back-fill Material (뒷채움재로 이용한 고로 수쇄슬래그의 토압특성에 관한 실험적 연구)

  • Baek, Won-Jin;Lee, Kang-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.119-127
    • /
    • 2006
  • Granulated Blast Furnace Slag (GBFS) is produced in the manufacture process of pig-iron and shows a similar particle formation to that of natural sea sand and also shows light weight, high shear strength, well permeability, and especially has a latent hydraulic property by which GBFS is solidified with time. Therefore, when GBFS is used as a backfill material of quay or retaining walls, the increase of shear strength induced by the hardening is presumed to reduce the earth pressure and consequently the construction cost of harbor structures decreases. In this study, using the model sand box (50 cm$\times$50 cm$\times$100 cm), the model wall tests were carried out on GBFS and Toyoura standard sand, in which the resultant earth pressure, a wall friction and the earth pressure distribution at the movable wall surface were measured. In the tests, the relative density was set as Dr=25, 55 and 70% and the wall was rotated at the bottom to the active earth pressure side and followed by the passive side. The maximum horizontal displacement at the top of the wall was set as ${\pm}2mm$. By these model test results, it is clarified that the resultant earth pressure obtained by using GBFS is smaller than that of Toyoura sand, especially in the active-earth pressure.

Influence of Rainfall Intensity and Saturated Permeability on Slope Stability during Rainfall Infiltration (강우침투시 강우강도와 포화투수계수가 안전율에 미치는 영향)

  • Lee, Seung-Rae;Oh, Tae-Kyu;Kim, Yun-Ki;Kim, Hee-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.65-76
    • /
    • 2009
  • The unsaturated characteristics of Korean weathered granite soils have been studied to investigate the influence of saturated permeability, rainfall intensity and soil-water characteristic curve (SWCC) on the slope stability. The upper, average and lower SWCCs were estimated from the publication and experimental results using the statistical concept. The roughly estimated SWCC can be used for the soils without experimental results by relating SWCC with the particle size distribution curve. An appropriate ratio between the saturated permeability and the rainfall intensity ($k_s$/i) was also suggested for practical use in designing the slopes by investigating the time-dependent variation of slope instability during the rainfall. The slope stability was deteriorated from the initiation of rainfall and recovered again after the factor of safety reached the critical value. The FS of the slope decreased at first and then increased after reaching the critical value during the rainfall. As a result, the slope instability was not related with an absolute rainfall intensity but with the ratio between the saturated permeability and the rainfall intensity. In case of the upper SWCC, the critical condition occurred when the ratio between the saturated permeability and the rainfall intensity was in the range of $1.0{\sim}2.0$.

Analysis of Upper- and Lower-level Wind and Trajectory in and from China During the P eriod of Occurrence of Migratory Insect Pests of South Korea (비래해충 발생기간 중국 발원지 바람 및 한반도 유입 궤적 분석)

  • Jung-Hyuk Kang;Seung-Jae Lee;Joo-Yeol Baek;Nak-Jung Choi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.415-426
    • /
    • 2023
  • In this study, the horizontal and vertical structure of wind speed and wind direction were analyzed at the origin of migratory insect pests in China. Wind rose analysis was carried out using the Land-Atmosphere Modeling Package (LAMP) - WRF data, which has the spatiotemporal resolution of about 20 km and 1 hour intervals. Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) was employed for backward trajectory analysis between South Korea and Southeastern China with Global Data Assimilation System (GDAS). The research interest date is July 16, when rice planthopper and leafhopper were observed at the same time. In order to examine where a jet stream occurs in the vertical in source regions and South Korea during the period (July 8 to July 17 in 2021), three-dimensional wind information was extracted and analyzed using the east-west, north-south, and vertical component wind data of the LAM P. The vertical distribution of wind showed that the wind changed in favor of the inflow of migratory insect pests during the period. As a result of analyzing the wind rose, about 30% or more of the wind at a point close to South Korea was classified into the low-level jet stream. In addition, majority of the wind directions for the low-level jet streams (rather than high-level jet streams) at the five origin sites were heading toward South Korea and even Japan, and this was supported by the HYSPLIT-based backward trajectory analysis.

Determination of Exposure during Handling of 125I Seed Using Thermoluminescent Dosimeter and Monte Carlo Method Based on Computational Phantom

  • Hosein Poorbaygi;Seyed Mostafa Salimi;Falamarz Torkzadeh;Saeid Hamidi;Shahab Sheibani
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.4
    • /
    • pp.197-203
    • /
    • 2023
  • Background: The thermoluminescent dosimeter (TLD) and Monte Carlo (MC) dosimetry are carried out to determine the occupational dose for personnel in the handling of 125I seed sources. Materials and Methods: TLDs were placed in different layers of the Alderson-Rando phantom in the thyroid, lung and also eyes and skin surface. An 125I seed source was prepared and its activity was measured using a dose calibrator and was placed at two distances of 20 and 50 cm from the Alderson-Rando phantom. In addition, the Monte Carlo N-Particle Extended (MCNPX 2.6.0) code and a computational phantom with a lattice-based geometry were used for organ dose calculations. Results and Discussion: The comparison of TLD and MC results in the thyroid and lung is consistent. Although the relative difference of MC dosimetry to TLD for the eyes was between 4% and 13% and for the skin between 19% and 23%, because of the existence of a higher uncertainty regarding TLD positioning in the eye and skin, these inaccuracies can also be acceptable. The isodose distribution was calculated in the cross-section of the head phantom when the 125I seed was at two distances of 20 and 50 cm and it showed that the greatest dose reduction was observed for the eyes, skin, thyroid, and lungs, respectively. The results of MC dosimetry indicated that for near the head positions (distance of 20 cm) the absorbed dose rates for the eye lens, eye and skin were 78.1±2.3, 59.0±1.8, and 10.7±0.7 µGy/mCi/hr, respectively. Furthermore, we found that a 30 cm displacement for the 125I seed reduced the eye and skin doses by at least 3- and 2-fold, respectively. Conclusion: Using a computational phantom to monitor the dose to the sensitive organs (eye and skin) for personnel involved in the handling of 125I seed sources can be an accurate and inexpensive method.

Synthesis and characterization of Li3V2(PO4)3/C composite cathode materials using direct co-precipitation method (직접 공침법을 이용한 Li3V2(PO4)3/C 복합체 양극 활물질 합성 및 특성)

  • Jeong-Hwan Song
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.167-173
    • /
    • 2023
  • Li3V2(PO4)3 and Li3V2(PO4)3/C composite with single phase monoclinic structure for the cathode materials are successfully synthesized by direct co-precipitation method using N2H4·H2O as the reducing agent and alginic acid as the carbon source, and their electrochemical properties were compared. The particles with approximately 1~2 ㎛ size and the uniform spherical-like morphology of the narrow particle size distribution were obtained. In addition, the residual carbon can also improve the electrical conductivity. The Li3V2(PO4)3/C composite has improved initial specific discharge capacity and excellent cycle characteristics to maintain capacity stably than Li3V2(PO4)3. The results indicate that the reducing agent and carbon composite can affect the good crystallinity and electrochemical performance of the cathode materials.

Experimental study on the vertical bearing behavior of nodular diaphragm wall in sandy soil based on PIV technique

  • Jiujiang Wu;Longjun Pu;Hui Shang;Yi Zhang;Lijuan Wang;Haodong Hu
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.195-208
    • /
    • 2023
  • The nodular diaphragm wall (NDW) is a novel type of foundation with favorable engineering characteristics, which has already been utilized in high-rise buildings and high-speed railways. Compared to traditional diaphragm walls, the NDW offers significantly improved vertical bearing capacity due to the presence of nodular parts while reducing construction time and excavation work. Despite its potential, research on the vertical bearing characteristics of NDW requires further study, and the investigation and visualization of its displacement pattern and failure mode are scant. Meanwhile, the measurement of the force component acting on the nodular parts remains challenging. In this paper, the vertical bearing characteristics of NDW are studied in detail through the indoor model test, and the displacement and failure mode of the foundation is analyzed using particle image velocimetry (PIV) technology. The principles and methods for monitoring the force acting on the nodular parts are described in detail. The research results show that the nodular part plays an essential role in the bearing capacity of the NDW, and its maximum load-bearing ratio can reach 30.92%. The existence of the bottom nodular part contributes more to the bearing capacity of the foundation compared to the middle nodular part, and the use of both middle and bottom nodular parts increases the bearing capacity of the foundation by about 9~12% compared to a single nodular part of the NDW. The increase in the number of nodular parts cannot produce a simple superposition effect on the resistance born by the nodular parts since the nodular parts have an insignificant influence on the exertion and distribution of the skin friction of NDW. The existence of the nodular part changes the displacement field of the soil around NDW and increases the displacement influence range of the foundation to a certain extent. For NDWs with three different nodal arrangements, the failure modes of the foundations appear to be local shear failures. Overall, this study provides valuable insights into the performance and behavior of NDWs, which will aid in their effective utilization and further research in the field.

Comparative analysis on darcy-forchheimer flow of 3-D MHD hybrid nanofluid (MoS2-Fe3O4/H2O) incorporating melting heat and mass transfer over a rotating disk with dufour and soret effects

  • A.M. Abd-Alla;Esraa N. Thabet;S.M.M.El-Kabeir;H. A. Hosham;Shimaa E. Waheed
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.325-340
    • /
    • 2024
  • There are several novel uses for dispersing many nanoparticles into a conventional fluid, including dynamic sealing, damping, heat dissipation, microfluidics, and more. Therefore, melting heat and mass transfer characteristics of a 3-D MHD Hybrid Nanofluid flow over a rotating disc with presenting dufour and soret effects are assessed numerically in this study. In this instance, we investigated both ferric sulfate and molybdenum disulfide as nanoparticles suspended within base fluid water. The governing partial differential equations are transformed into linked higher-order non-linear ordinary differential equations by the local similarity transformation. The collection of these deduced equations is then resolved using a Chebyshev spectral collocation-based algorithm built into the Mathematica software. To demonstrate how different instances of hybrid/ nanofluid are impacted by changes in temperature, velocity, and the distribution of nanoparticle concentration, examples of graphical and numerical data are given. For many values of the material parameters, the computational findings are shown. Simulations conducted for different physical parameters in the model show that adding hybrid nanoparticle to the fluid mixture increases heat transfer in comparison to simple nanofluids. It has been identified that hybrid nanoparticles, as opposed to single-type nanoparticles, need to be taken into consideration to create an effective thermal system. Furthermore, porosity lowers the velocities of simple and hybrid nanofluids in both cases. Additionally, results show that the drag force from skin friction causes the nanoparticle fluid to travel more slowly than the hybrid nanoparticle fluid. The findings also demonstrate that suction factors like magnetic and porosity parameters, as well as nanoparticles, raise the skin friction coefficient. Furthermore, It indicates that the outcomes from different flow scenarios correlate and are in strong agreement with the findings from the published literature. Bar chart depictions are altered by changes in flow rates. Moreover, the results confirm doctors' views to prescribe hybrid nanoparticle and particle nanoparticle contents for achalasia patients and also those who suffer from esophageal stricture and tumors. The results of this study can also be applied to the energy generated by the melting disc surface, which has a variety of industrial uses. These include, but are not limited to, the preparation of semiconductor materials, the solidification of magma, the melting of permafrost, and the refreezing of frozen land.