• Title/Summary/Keyword: Particle Dispersion and Deposition

Search Result 22, Processing Time 0.027 seconds

SIMULATION OF PARTICLE DISPERSION AND DEPOSITION IN FLOW AROUND TWO CIRCULAR CYLINDERS IN A SIDE-BY-SIDE ARRANGEMENT (병렬로 배열된 두 개의 원형 실린더 유동에서 입자의 분산과 부착 해석)

  • Hwang, Dongjun;Kim, Dongjoo
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.81-89
    • /
    • 2016
  • Numerical simulations are carried out for the fluid flow and particle transport around two nearby circular cylinders in a side-by-side arrangement. The present study aims to understand the effects of the particle Stokes number and the spacing between two cylinders on particle dispersion and deposition characteristics. Simulations are based on an Eulerian-Lagrangian approach where the motion of particles is calculated by a Lagrangian approach based on one-way coupling. Results show that the flow structure is very different depending on the cylinder spacing, eventually affecting the overall pattern of particle dispersion significantly. It is also found that particles with smaller Stokes number tend to be distributed more uniformly in the wake of two cylinders, being located even inside the vortex cores. Meanwhile, particle deposition is analyzed in terms of the deposition efficiency and deposition location. The deposition efficiency of particles strongly depends on the Stokes number, whereas it is slightly affected by the cylinder spacing. The deposition location gets wider as the Stokes number increases, and it becomes asymmetric about the center of each cylinder as the cylinders get close.

Effects of Cylinder Rotation on Particle Laden Flow and Particle Deposition on a Rotating Circular Cylinder (실린더의 회전이 원형 실린더 주위의 입자 부유 유동 및 입자 부착에 미치는 영향)

  • Lee, Seungwoo;Kim, Dongjoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.239-248
    • /
    • 2017
  • It is important to understand the dispersion and deposition characteristics of particles in the flow around a circular cylinder. The rotation of a cylinder is considered as a means to modify the particle deposition in this study. We numerically investigate the effects of the rotational speed of a cylinder and the particle Stokes number on particle dispersion and deposition as well as flow characteristics. Results show that the deposition efficiency of small particles (with the Stokes number smaller than 4) decreases significantly as the rotational speed increases. However, when the Stokes number is larger than 4, the deposition efficiency increases slightly with the rotational speed of the cylinder. Meanwhile, for a given rotational speed, the increase in the Stokes number leads to an increase in deposition efficiency and deposited area.

Simulation of fluid flow and particle transport around two circular cylinders in tandem at low Reynolds numbers (낮은 레이놀즈 수에서 두 개의 원형 실린더 주위 유동 및 입자 거동 해석)

  • Khalifa, Diaelhag Aisa Hamid;Jeong, S.;Kim, D.
    • Particle and aerosol research
    • /
    • v.17 no.4
    • /
    • pp.81-89
    • /
    • 2021
  • Understanding particle-laden flow around cylindrical bodies is essential for the better design of various applications such as filters. In this study, laminar flows around two tandem cylinders and the motions of particles in the flow are numerically investigated at low Reynolds numbers. We aim to reveal the effects of the spacing between cylinders, Reynolds number and particle Stokes number on the characteristics of particle trajectories. When the cylinders are placed close, the unsteady flow inside the inter-cylinder gap at Re = 100 shows a considerable modification. However, the steady recirculation flow in the wake at Re = 10 and 40 shows an insignificant change. The change in the flow structure leads to the variation of particle dispersion pattern, particularly of small Stokes number particles. However, the dispersion of particles with a large Stokes number is hardly affected by the flow structure. As a result, few particles are observed in the cylinder gap regardless of the cylinder spacing and the Reynolds number. The deposition efficiency of the upstream cylinder shows no difference from that of a single cylinder, increasing as the Stokes number increases. However, the deposition on the downstream cylinder is found only at Re = 100 with large spacing. At this time, the deposition efficiency is generally small compared to that of an upstream cylinder, and the deposition location is also changed with no deposited particles near the stagnation point.

Addition Effect of the Deposition and Buoyancy Terms in Modeling Turbulence Diffusion of Hazardous Air Pollutants (유해 대기오염물질의 난류확산 수치모의에서 침적한과 부력항 추가에 따른 효과)

  • Won, Gyeong-Mee;Lee, Hwa-Woon;Ji, Hyo-Eun;Kim, Cheol-Hee;Song, Chang-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.73-84
    • /
    • 2006
  • Hazardous Air Pollutants (HAPs) are characterized by being relatively heavier and denser than that of ambient air due to the various reasons such as higher molecular weight, low temperature and other complicated chemical transformations (Witlox, 1994). In an effort to investigate transport and diffusion from instantaneous emission of heavy gas, Lagrangian Particle Dispersion Model (LPDM) coupled with the RAMS output was employed. Both deposition process and buoyancy term were added on the atmospheric diffusion equations of LPDM, and the locations and concentrations of dense gas particle released from instantaneous single point source (emitting initially for 10 minutes only) were analyzed. The result overall shows that adding deposition process and buoyancy terms on the diffusion equation of LPDM has very small but detectable effect on the vertical and horizontal distribution of Lagrangian particles that especially transported for a fairly long traveling time. Also the slumping of dense gas can be found to be ignored horizontally compared to the advection by the horizontal wind suggesting that it was essential to couple the Lagrangian particle dispersion model coupled with the RAMS model in order to explain the dispersion of HAPs more accurately. However, during the initial time of instantaneous emission, buoyancy term play an important role on the vertical locations of dense particles for near surface atmosphere and around source area, indicating the importance of densities of HAPs in the beginning stage or short duration for the risk assessment of HAPs or management of heavy vapors during the explosive accidents.

Preparation of Highly Dispersed Ru/$\alpha-Al_2O_3$ Catalyst for Preferential CO Oxidation (선택적 CO 산화 반응을 위한 Ru/$\alpha-Al_2O_3$ 촉매 고분산 제조 방법에 관한 연구)

  • Eom, Hyun-Ji;Koo, Kee-Young;Jung, Un-Ho;Rhee, Young-Woo;Yoon, Wang-Lai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.390-397
    • /
    • 2010
  • 0.5wt% Ru/$\alpha-Al_2O_3$ catalysts are prepared by deposition-precipitation method for the preferential CO oxidation In order to investigate the effect of pH on the Ru dispersion and particle size, the pH of precursor solution is adjusted to between 5.5 and 9.5. 0.5wt% Ru/$\alpha-Al_2O_3$ catalyst prepared at the pH of 6.5 has high Ru dispersion of 17.9% and small particle size of 7.7nm. In addition, 0.5wt% Ru/$\alpha-Al_2O_3$ catalyst prepared at the pH 6.5 is easily reduced at low temperatures below $150^{\circ}C$ due to high dispersion of $RuO_2$ particle and shows high CO conversion over 90% in the wide temperature range between $100^{\circ}C$ and $160^{\circ}C$. Moreover, the deposition-precipitation is a feasible method to improve the Ru dispersion as compared to the impregnation method. The 0.5wt% Ru/$\alpha-Al_2O_3$ catalyst prepared by deposition-precipitation exhibits higher CO conversion than 0.5wt% Ru/$\alpha-Al_2O_3$ catalysts prepared by impregnation due to higher metal dispersion and better reducibility at low temperature.

A Numerical Study on Coughed Particle Dispersion and Deposition in Negative Pressure Isolation Room according to Particle Size (음압격리병실에서의 기침 토출입자의 입경에 따른 확산 및 침적에 대한 수치해석 연구)

  • Jung, Minji;Hong, Jin Kwan
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.24 no.2
    • /
    • pp.37-44
    • /
    • 2018
  • Purpose: This study investigates the influences of coughing direction and healthcare worker's location on the transport characteristics of coughed particles in airborne infection isolation room (AIIR), which is commonly called negative pressure isolation room, with a downward ventilation system. Methods: Computational Fluid Dynamics (CFD) was used to simulate the airflow and for tracing the behavior of particles. Results: The results show that the airflow pattern and coughing direction have a significant influence on the characteristics of particle dispersion and deposition. When healthcare workers are in the isolation room with the patient who is lying on the bed, it is recommended to be located far from the anteroom to reduce the exposures from infectious particles. And when the patient is lying, it is more effective in removing particles than when the patient is in Fowler's position. Although it is an isolation room that produces unidirectional flow, coughing particles can spread to the whole room and a large number of particles can be deposited onto patient, bed, side rails, healthcare worker, ceiling, floor, and sidewall. Implications: Following the patients' discharge or transfer, terminal cleaning of the vacated room, furniture, and all clinical equipment is essential. Also, it is necessary to establish detailed standard operating procedure (SOP) in order to reduce the risk of cross-contamination.

N2 plasma treatment of pigments with minute particle sizes to improve their dispersion properties in deionized water

  • Zhang, Jingjing;Park, Yeong Min;Tan, Xing Yan;Bae, Mun Ki;Kim, Dong Jun;Jang, Tae Hwan;Kim, Min Su;Lee, Seung Whan;Kim, Tae Gyu
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.589-596
    • /
    • 2019
  • Pigments with minute particle sizes, such as carbon black (CB) and pigment red 48:2 (P.R.48:2), are the most important types of pigment and have been widely used in many industrial applications. However, minute particles have large surface areas, high oil absorption and low surface energy. They therefore tend to be repellent to the vehicle and lose stability, resulting in significant increases in viscosity or reaggregation in the vehicle. Therefore, finding the best way to improve the dispersion properties of minute particle size pigments presents a major technical challenge. In this study, minute particle types of CB and P.R.48:2 were treated with nitrogen gas plasma generated via radio frequency-plasma enhanced chemical vapor deposition (RF-PECVD) to increase the dispersion properties of minute particles in deionized (DI) water. The morphologies and particle sizes of untreated and plasma treated particles were evaluated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The average distributions of particle size were measured using a laser particle sizer. Fourier transform infrared spectroscopy was carried out on the samples to identify changes in molecular interactions during plasma processing. The results of our analysis indicate that N2 plasma treatment is an effective method for improving the dispersibility of minute particles of pigment in DI water.

A Study on the Variation of Physical Properties by the Water to Cement Ratio and the Mixing Speed for Grout Materials (그라우트재의 물시멘트비 및 혼합속도에 의한 물성변화에 관한 연구)

  • 천병식;김진춘;장의웅;송성호;이준우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.445-452
    • /
    • 2001
  • Generally, OPC(ordinary portland cement) is used for grouting in Korea, and bentonite has usually been added to prevent the deposition of cement particles. The dispersion of CB(cement bentonite) grout is influenced by variable factors i.e. water to cement ratio, particle size of cement, kind of bentonite, adding volume, methods of adding, viscosity of CB grout materials and curdling time. Among variable factors, the viscosity of CB grout materials is influenced by the dispersion, and dispersion is improved as increasing the mixing speed. In this paper, described a suitable mixing speed of the High Speed Mixer in field, engineering characteristics of CB grout materials vary with the water to cement ratio and the mixing speed as well as confirming the state of dispersion.

  • PDF

Effect of Preparation Conditions on the Hydrogenation Activity and Metal Dispersion of Pt/C and Pd/C Catalysts

  • Jhung, Sung-Hwa;Lee, Jin-Ho;Lee, Jong-Min;Lee, Ji-Hye;Hong, Do-Young;Kim, Myong-Woon;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.563-568
    • /
    • 2005
  • The Pt/C and Pd/C catalysts were prepared from conventional chloride precursors by adsorption or precipitation-deposition methods. Their activities for hydrogenation reactions of cyclohexene and acetophenone were compared with those of commercial catalysts. The Pt/C and Pd/C catalysts obtained from the adsorption procedure reveal higher hydrogenation activity than commercial catalysts and the catalysts prepared by the precipitation-deposition method. Their improved performances are attributed to the decreased metal crystallite sizes of Pt or Pd formed on the active carbon support upon the adsorption of the precursors probably due to the same negative charges of the chloride precursor and the carbon support. Under the preparation conditions studied, the reduction of the supported catalysts using borohydrides in liquid phase is superior to a gas phase reduction by using hydrogen in the viewpoint of particle size, hydrogenation activity and convenience.

Formulation of Liposome for Topical Delivery of Arbutin

  • Wen, Ai-Hua;Choi, Min-Koo;Kim, Dae-Duk
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1187-1192
    • /
    • 2006
  • The aims of this study were to encapsulate arbutin (AR) in liposome to enhance the skin-whitening activity, and to investigate the effect of liposome formulation on the entrapment efficiency (EE%), skin permeation rate and skin deposition. The liposomes were prepared by a film dispersion method with several different formulations and were separated from the solution by using the gel-filtration method. The physical (size distribution, morphology) and chemical (drug entrapment efficiency, hairless mouse skin permeation and deposition) properties of liposomes were characterized. The entrapment efficiency in all liposome formulations varied between 4.35% and 17.63%, and was dependent on the lipid content. The particle sizes of liposomes were in the range of $179.9{\sim}212.8\;nm$ in all liposome formulations. Although the permeation rate of AR in the liposome formulations decreased compared with AR solution, the deposition amount of AR in the epidermis/dermis layers increased in AR liposomal formulation. These results suggest that liposomal formulation could enhance the skin deposition of hydrophilic skin-whitening agents, thereby enhancing their activities.