• Title/Summary/Keyword: Particle Cluster

Search Result 127, Processing Time 0.028 seconds

Effects of SiC Cluster on Mechanical Properties of the 2024A1/$SiC_p$ Composites (2024A1/$SiC_p$복합재료의 기계적특성에 미치는 SiC클러스터의 영향)

  • 김홍물;천병선
    • Journal of Powder Materials
    • /
    • v.8 no.2
    • /
    • pp.124-130
    • /
    • 2001
  • A centrifugally atomized 2024A1/SiC/sub p/ composites were extruded to study effect of clusters on mechanical properties, and a model was proposed that the strength of MMCs would be estimated from the load transfer model approach that taken into consideration of the clusters. This model has been successfully utilized to predict the strength and fracture toughness of MMCs. The experimental and calculated results show coincidence and that the fracture toughness decreases with increasing the volume fraction of particles. On the basis of experimental observations, we suggest that the strength and fracture toughness of particle reinforced MMCs may be calculated from; σ/sub y/=σ/sub m/V/sub m/+σ/sub r/(V/sub r/-V/sub c)-σ/sub r/V/sub c/, K/sub IQ/=σ/sub Y/((3πt)((r/sub r//V/sub r/)(r/sub c//V/sub c/))/sup 1/2/)/sup 1/2/, respectively.

  • PDF

CONTRIBUTIONS TO THE COSMIC RAY FLUX ABOVE THE ANKLE: CLUSTERS OF GALAXIES

  • KANG HYESUNG;RACHEN JORG P.;BIERMANN PETER L.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.271-272
    • /
    • 1996
  • Assuming that particles can be accelerated to high energies via diffusive shock acceleration process at the accretion shocks formed by the infalling flow toward the clusters of galaxies, we have calculated the expected spectrum of high-energy protons from the cosmological ensemble of the cluster accretion shocks. The model with Jokipii diffusion limit could explain the observed cosmic ray spectrum near $10^{19}eV$ with reasonable parameters and models if about $10^{-4}$ of the infalling kinetic energy can be injected into the intergalactic space as the high energy particles.

  • PDF

A Study on the Mechanism of Clusters Formation of ER Fluids (ER유체의 클러스터 형성 메커니즘에 관한 연구)

  • Rhee Eun-Jun.;Park Myeong-Kwan.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.503-506
    • /
    • 2002
  • Electrorheological fluids(ERFs) show a rapid and reversible increase in viscosity by applied electric field. It is called the electrorheological effect (ER effect). The reason for ER effect is the induction of an electric dipole in each particle, leading to the formation of clusters in the direction of the field, which resist fluid flow. Generally, the behavior of ER fluids has been modeled on those of Bingham fluids. But there are some differences between Bingham fluids and ER fluids. The visualization of ER fliuds are presented and ER effects by the forming, growing and breaking of clusters are discussed. In the low shear rate area, the pressure drop is measured by a pressure sensor and the formation of ER particles is visualized by video camera. The reason for the nonlinear behavior of ER fluids at low shear rate is explained through results of visualization.

  • PDF

Particle Stacking Dependence of Properties and Dispersitility of Ba-ferrite Powder for Magnetic Recording (입자간 Stacking이 자기기록용 Ba-ferrite 분말의 물성과 분산성에 미치는 영향)

  • 홍양기;정홍식;박상준
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.2
    • /
    • pp.117-121
    • /
    • 1996
  • 육각판상 Ba-ferrite의 stacking 현상은 자성도료의 도포 후 자장배향를 행할 때 일어나는 것으로 알려져 있으나 분말의 건식분쇄시에도 일어났다. Edge mill을 사용하여 건식분쇄할 때 치환형 Ba-ferrite 분말의 보자력과 tap density는 거의 비례적으로 증가하였고, 분쇄시간보다는 가해지는 압력에 크게 의존하였다. 이 때 보자력의 증가원인은 분쇄시 생성되는 입자간의 stacking 현상에 기인된 것임을 투과전자현미경 관찰로부터 확인하였다. 분말의 tap density가 증가함에 따라 tape에서 분산초기의 광택도가 크게 감소되어 분산성은 떨어졌으나, 배향도는 tap density 1.3 g/$cm^{3}$에서 최대를 나타내었다. 과도한 건식분쇄에 의해 생성된 강고한 stacked cluster는 자성도료 제조시 분산성과 배향도를 동시에 떨어뜨리는 역할을 함을 알 수 있었다.

  • PDF

Evaluation of the Applicability of the Poisson Cluster Rainfall Generation Model for Modeling Extreme Hydrological Events (극한수문사상의 모의를 위한 포아송 클러스터 강우생성모형의 적용성 평가)

  • Kim, Dong-Kyun;Kwon, Hyun-Han;Hwang, Seok Hwan;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.773-784
    • /
    • 2014
  • This study evaluated the applicability of the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) rainfall generation model for modeling extreme rainfalls and floods in Korean Peninsula. Firstly, using the ISPSO (Isolated Species Particle Swarm Optimization) method, the parameters of the MBLRP model were estimated at the 61 ASOS (Automatic Surface Observation System) rain gauges located across Korean Peninsula. Then, the synthetic rainfall time series with the length of 100 years were generated using the MBLRP model for each of the rain gauges. Finally, design rainfalls and design floods with various recurrence intervals were estimated based on the generated synthetic rainfall time series, which were compared to the values based on the observed rainfall time series. The results of the comparison indicate that the design rainfalls based on the synthetic rainfall time series were smaller than the ones based on the observation by 20% to 42%. The amount of underestimation increased with the increase of return period. In case of the design floods, the degree of underestimation was 31% to 50%, which increases along with the return period of flood and the curve number of basin.

Numerical Modeling of Large Triaxial Compression Test with Rockfill Material Considering 3D Grain Size Distribution (3차원 입도분포를 고려한 락필재료의 대형삼축압축시험 수치모델링)

  • Noh, Tae Kil;Jeon, Je Sung;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.55-62
    • /
    • 2012
  • In this research, the algorithm for simulating specific grain size distribution(GSD) with large diameter granular material was developed using the distinct element analysis program $PFC^{3D}$(Particle Flow Code). This modeling approach can generate the initial distinct elements without clump logic or cluster logic and prevent distinct element from escaping through the confining walls during the process. Finally the proposed distinct element model is used to simulate large triaxial compression test of the rockfill material and we compared the simulation output with lab test results. Simulation results of Assembly showed very well agreement with the GSD of the test sample and numerical modeling of granular material would be possible for various stress conditions using this application through the calibration.

RADIO EMISSION FROM WEAK SPHERICAL SHOCKS IN THE OUTSKIRTS OF GALAXY CLUSTERS

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.2
    • /
    • pp.155-164
    • /
    • 2015
  • In Kang (2015) we calculated the acceleration of cosmic-ray electrons at weak spherical shocks that are expected to form in the cluster outskirts, and estimated the diffuse synchrotron radiation emitted by those electrons. There we demonstrated that, at decelerating spherical shocks, the volume integrated spectra of both electrons and radiation deviate significantly from the test-particle power-laws predicted for constant planar shocks, because the shock compression ratio and the flux of inject electrons decrease in time. In this study, we consider spherical blast waves propagating through a constant density core surrounded by an isothermal halo with ρ ∝ r−n in order to explore how the deceleration of the shock affects the radio emission from accelerated electrons. The surface brightness profile and the volumeintegrated radio spectrum of the model shocks are calculated by assuming a ribbon-like shock surface on a spherical shell and the associated downstream region of relativistic electrons. If the postshock magnetic field strength is about 0.7 or 7 µG, at the shock age of ∼ 50 Myr, the volume-integrated radio spectrum steepens gradually with the spectral index from αinj to αinj + 0.5 over 0.1–10 GHz, where αinj is the injection index at the shock position expected from the diffusive shock acceleration theory. Such gradual steepening could explain the curved radio spectrum of the radio relic in cluster A2266, which was interpreted as a broken power-law by Trasatti et al. (2015), if the relic shock is young enough so that the break frequency is around 1 GHz.

Similarity-based Dynamic Clustering Using Radar Reflectivity Data (퍼지모델을 이용한 유사성 기반의 동적 클러스터링)

  • Lee, Han-Soo;Kim, Su-Dae;Kim, Yong-Hyun;Kim, Sung-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.219-222
    • /
    • 2011
  • There are number of methods that track the movement of an object or the change of state, such as Kalman filter, particle filter, dynamic clustering, and so on. Amongst these method, dynamic clustering method is an useful way to track cluster across multiple data frames and analyze their trend. In this paper we suggest the similarity-based dynamic clustering method, and verifies it's performance by simulation. Proposed dynamic clustering method is how to determine the same clusters for each continuative frame. The same clusters have similar characteristics across adjacent frames. The change pattern of cluster's characteristics in each time frame is throughly studied. Clusters in each time frames are matched against each others to see their similarity. Mamdani fuzzy model is used to determine similarity based matching algorithm. The proposed algorithm is applied to radar reflectivity data over time domain. We were able to observe time dependent characteristic of the clusters.

  • PDF

Synoptic-Scale Meteorological Clustering Analysis of Volcanic Ash Inflow into the Korean Peninsula Following the Eruption of Mt. Baekdu

  • Da Eun Chae;Hearim Jeong;Soon-Hwan Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.8
    • /
    • pp.591-604
    • /
    • 2024
  • To investigate the frequency and trajectories of volcanic ash from Mt. Baekdu reaching the Korean Peninsula, a forward trajectory analysis was conducted using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Through a cluster analysis of air parcel trajectories, we identified the main pathways of the volcanic ash from Mt. Baekdu entering the Korean Peninsula and analyzed the synoptic meteorological conditions on those days. The frequency of volcanic ash reaching the Korean Peninsula was 82 times at an altitude of 1000 m and 70 times at 2000 m, with an increasing trend from 2016 to 2022. This increase is attributed to the weakening of westerly winds and the strengthening of north-south winds due to global warming. Five and three trajectory clusters were classified at 1000 m and 2000 m, respectively. At a starting altitude of 1000 m, most air parcels originating from Mt. Baekdu entered the Korean Peninsula under weather conditions (C2, C3) where the pressure gradient from the northwest to the southeast was small, resulting in weak northerly winds. C2 and C3 showed shorter trajectories, which occurred in all seasons, except summer. At a starting altitude of 2000 m, air parcels mostly passed over the Korean Peninsula in a synoptic pattern similar to that at 1000 m in altitude; however, the air parcels had simpler paths and less frequent inflow. C2, at a starting altitude of 2000 m, originates from Mount Baekdu, crosses the center of the Korean Peninsula, and continues to the central region. At a starting altitude of 1000 m, volcanic ash can enter the Korean Peninsula when there is no strong low-pressure system to the southeast of the Korean Peninsula, whereas at 2000 m, volcanic ash can enter the Korean Peninsula when the Siberian high-pressure system is weak.

Synthesis of Fe/SiO2 Core-Shell Nanoparticles by a Reverse Micelle and Sol-Gel Processes

  • Son, Jeong-Hun;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.298-302
    • /
    • 2012
  • Fe/$SiO_2$ core-shell type composite nanoparticles have been synthesized using a reverse micelle process combined with metal alkoxide hydrolysis and condensation. Nano-sized $SiO_2$ composite particles with a core-shell structure were prepared by arrested precipitation of Fe clusters in reverse micelles, followed by hydrolysis and condensation of organometallic precursors in micro-emulsion matrices. Microstructural and chemical analyses of Fe/$SiO_2$ core-shell type composite nanoparticles were carried out by TEM and EDS. The size of the particles and the thickness of the coating could be controlled by manipulating the relative rates of the hydrolysis and condensation reaction of TEOS within the micro-emulsion. The water/surfactant molar ratio influenced the Fe particle distribution of the core-shell composite particles, and the distribution of Fe particles was broadened as R increased. The particle size of Fe increased linearly with increasing $FeNO_3$ solution concentration. The average size of the cluster was found to depend on the micelle size, the nature of the solvent, and the concentration of the reagent. The average size of synthesized Fe/$SiO_2$ core-shell type composite nanoparticles was in a range of 10-30 nm and Fe particles were 1.5-7 nm in size. The effects of synthesis parameters, such as the molar ratio of water to TEOS and the molar ratio of water to surfactant, are discussed.