• Title/Summary/Keyword: Particle

Search Result 15,995, Processing Time 0.041 seconds

Characteristic Response of the OSMI Bands to Estimate Chlorophyll $\alpha$ (클로로필 $\alpha$ 추정시 OSMI 밴드의 광학 반응 특성)

  • 서영상;이나경;장이현;황재동;유신재;임효숙
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.4
    • /
    • pp.187-199
    • /
    • 2002
  • Correlation between chlorophyll a in the East China Sea and spectral bands (412, 443, 490, (510), 555, (676, 765)nm) of Ocean Scanning Multi-Spectral Imager (OSMI) including the profile multi-spectral radiometer (PRR-800) was studied. The values of remote sensing reflectance (Rrs) at the bands corresponding to the field chlorophyll $\alpha$ in the East China Sea were much higher than those in clear waters off California, USA. In case of the particle absorptions related to the chlorophyll a concentration at the spectral bands (440, 670nm) were much higher in the East China Sea than the ones in the clean waters off California. The normalized water leaving radiances (nLw) at 412, 443, 490, 555 nm of OSMI and the field chlorophyll a in the East China Sea were correlated each other. According to the results, the relationship between field chlorophyll $\alpha$ and nLw 410 nm in OSMI bands was the lowest, whereas that between field chlorophyll a and nLw 555 nm in the bands was the highest. Reciprocal action between the field chlorophyll a and the band ratio of the OSMI bands (nLw410/nLw555, nLw443/nLw555, nLw490/nLw555) was also studied. Relationship between the chlorophyll $\alpha$ and the band ratio (nLw490/nLw555) was highest in the OSMI bands. Relationship between the chlorophyll $\alpha$ and the ratio (nLw490/nLw555) was higher than one in the nLw410/nLw555. The difference in the estimated chlorophyll $\alpha$ (mg/m$^3$) between OSMI and SeaWiFS (Sea Viewing Wide Field-of-View Sensor) at the special observing stations in the northern eastern sea of Jeju Island in February 25, 2002 was about less than 0.3 mg/m$^3$ within 3 hours. It is suggested that OC2 (ocean color chlorophyll 2 algorithm) be used to get much better estimation of chlorophyll $\alpha$ from OSMI than the ones from the updated algorithms as OC4.

Study on the Application of Miwon Organic Fertilizer (Byproduct of Amino Acid Fermentation) to the Ginseng Cultivation -II. The Application Effect of Miwon Organic Fertilizer on the Changes of Physicochemical Properties during the Soil Management Practices before Transplanting and Growth of Ginseng Plant (미원유기질비료(味元有機質肥料) (아미노산(酸) 발효부산비료박(醱酵副産肥料粕)) 시용(施用)에 의(依)한 인삼재배(人蔘栽培)에 관(關)한 연구(硏究) -II. 미원유기질비료(味元有機質肥料) 시용(施用)이 인삼예정지(人蔘豫定地) 토양(土壤)의 이화학적(理化學的) 성질(性質) 및 인삼생육(人蔘生育)에 끼치는 영향(影響))

  • Uhm, Dae-Ick;Han, Kang-Wan;Ahn, Byeong-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.4
    • /
    • pp.392-406
    • /
    • 1985
  • The soil management practices before transplanting the ginseng plant were studied with two organic matter sources such as a traditional organic matter (wild grass) and commercial organic fertilizer (byproducts of amino acid fermantation) during the late spring to late autumn. During the soil management practices, the soil received 40kg N/10a from five different combination treatments with above two organic matter sources, a wild grass and a commercial organic fertilizer. After the application of the treatments, the soil were ploughed regularly at the interval of 20 days and the changes of physicochemical properties during the soil management practices were investigated. The next year after soil management practices, ginseng plants were transplanted to each treatment, growth and the content of some organic components of ginseng plant were measured for comparision of the different treatments. 1. The decrease in bulk density observed during the first 40 days of management was considered to be the effect of the improved physical conditions caused by ploughing, The decrease in bulk density observed after 40 days of management was considered to be the effect of organic matter. Similar results were observed in particle density, however porosity increased with time. 2. Soil pH tended to decrease during the first 40 days of management, after which period the pH increased and was stabilized. However, CEC increased with organic matter treatment and the exchangeable $NH^+_4-N$ and $NO^-_3-N$ increased in 20 and 40 days after the management practices, respectively, and after that period it became steady. 3. The decomposition rate of treated organic matter was measured by the incubation test in laboratory conditions. The rate of decomposition was rapid during the first 20 days of management, after which period it showed slight changes. 4. The weight of ginseng root significantly increased in the treatment of 10kg N/10a organic fertilizer and 30kg N/10a wild grass. 5. The saponin content of ginseng root was highest in the 40kg N/10a wild grass treatment. The addition of organic fertilizer at the rate of more than 20kg N/10a caused the decrease in the saponin content.

  • PDF

Taxonomical Classification and Genesis of Asan Series Distributed on Rolling and Hilly Areas (구릉지 토양인 아산통의 분류 및 생성)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Sonn, Yeon-Kyu;Park, Chan-Won;Chun, Hyen-Chung;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1258-1263
    • /
    • 2011
  • This study was conducted to reclassify Asan series based on the second edition of Soil Taxonomy and to discuss the formation of Asan series distributed on the rolling to hilly areas. Morphological properties of typifying pedon of Asan series were investigated and physico-chemical properties were analyzed according to Soil survey laboratory methods manual. The typifying pedon of Asan series has dark yellowish brown (10YR 4/4) gravelly loam Ap horizon (0-18 cm), strong brown (7.5YR 5/6) gravelly clay loam BA horizon (18-30 cm), red (2.5YR 4/6) gravelly clay loam Bt1 horizon (30-52 cm), red (2.5YR 4/8) gravelly clay loam Bt2 horizon (52-98 cm), and red (2.5YR 4/8) gravelly clay loam C horizon (98-160 cm). The typifying pedon has an argillic horizon from a depth of 30 to 98 cm and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. It can be classified as Ultisol, not as Inceptisol. It has udic soil moisture regime, and can be classified as Udult. Also that meets the requirements of Typic Hapludults. It has 18-35% clay at the particle-size control section, and has mesic soil temperature regime. Therefore Asan series can be classified as fine loamy, mesic family of Typic Hapludults, not as fine loamy, mesic family of Typic Dystrudepts. Asan series occur on rolling to hilly areas in residual materials derived from granite gneiss, schist, and gneiss rocks. They are developed as Ultisols with clay mineral weathering, translocation of clays to accumulate in an argillic horizon, and leaching of base-forming cations from the profile for relatively long periods under humid and temperate climates in Korea.

Micromorphological and Mineral Characteristics of the Jang-won Series which have Fragipan in the soil Profile (경반층 토양인 장원통의 미세형태학적 및 광물학적 특성)

  • Moon, Yong-Hee;Zhang, Yong-Seon;Chun, Hyen-Chung;Sonn, Yeon-Kyu;Hyun, Byung-Keun;Park, Chan-Won;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.916-921
    • /
    • 2011
  • This study was carry out on a Jang-Won series (fine loamy, mixed, mesic family of typic fragipan) that were established and classified as a fragipan soil in Korea. The morphological, physical, chemical and minerals characteristics of Jang-Won series were studied to determine the genesis of fragipan soils in natural environment. Each sample was analyzed for its physical, chemical and mineralogical characteristics. The particle size distribution of samples was measured using pipette method. Clay minerals were investigated on parallel-oriented specimens of the clay fraction ($<2{\mu}m$) from each horizon, separated by sieving and centrifugation, using X-ray diffraction (XRD) analysis. Micromorphological observations were made on thin sections prepared from soil blocks impregnated with Crystic Resin, cut and ground to less than $30{\mu}m$ in thickness, and finally polished with diamond paste. Most horizons have pH values in the range of fewer than 5.0 and have very low base-saturation values. Their textural classification ranges from silt loam to loam, the lower horizons being the finer. The clay fraction revealed the occurrence of illite, kaolinite, chlorite and vermiculite. The micro-morphological analysis carries out thin sections from each soil profile. The silt concentrations occur as extremely dense and homogenous bands or zones of silt-sized materials, brownish in colour in plane-polarized light and anisotropic in cross-polarized light, surrounding or adhering to skeleton grains. The genesis of fragipan in the Jangweon series assumed composition of clay fraction rather than silt concentration. Therefore, this results suggested an authentic interpretation which Jangweon series is classification as Typic Fragiochrepts.

Taxonomical Classification of Jangho Series (장호통의 분류)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Sonn, Yeon-Kyu;Zhang, Yong-Seon;Park, Chan-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.330-335
    • /
    • 2009
  • This study was conducted to reclassify Jangho series based on the second edition of Soil Taxonomy : A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Morphological properties of typifying pedon of Jangho series were investigated and physico-chemical properties were analyzed according to Soil Survey Laboratory Methods Manual. The typifying pedon of Jangho series has very dark grayish brown (10YR 3/2) gravelly silt loam A horizon (0~14 cm), very dark brown (7.5YR 3/2) silty clay BAt horizon (14~31 cm), dark brown (7.5YR 3/4) silty clay Bt1 horizon (31~58 cm), brown (7.5YR 4/4) silty clay Bt2 horizon (58~90 cm), and brown (7.5YR 4/4) clay Bt3 (90~120 cm) horizon. That is developed on river terraces. The typifying pedon has an argillic horizon from a depth of 14 to more than 120 cm and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. That can be classified as Ultisol. The typifying pedon has 0.9 % or more organic carbon in the upper 15 cm of the argillic horizon, and can be classified as Humult, which is reported for the first time in Korea. That does not have fragipan, kandic horizon, sombric horizon, plinthite, etc. in the given depths, and keys out as Haplohumult. Also that meets the requirements of Typic Haplohumult. That has 35 % or more clay at the particle-size control section, and has mesic soil temperature regime. Jangho series can be classified as fine, mixed, mesic family of Typic Haplohumults, not as fine silty over clayey, mixed, mesic family of Mollic Hapludalfs.

Taxonomical Classification of Namweon Series, Black Volcanic Ash Soils (흑색 화산회토인 남원통의 분류)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Sonn, Yeon-Kyu;Lim, Han-Cheol;Lee, Shin-Chan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.385-392
    • /
    • 2009
  • This study was conducted to reclassify Namweon series, black volcanic ash soils, in Jeju Island based on the second edition of Soil Taxonomy : A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Morphological properties of typifying pedon of Namweon series were investigated and physicochemical properties were analyzed according to Soil Survey Laboratory Methods Manual. The typifying pedon of Namweon series has black (10YR 2/1) silt loam Ap horizon (0~11 cm) and black (10YR 2/1) silt loam BA horizon (11~72 cm). Bw horizon (72~100 cm) is very dark brown (10YR 2/2) silt loam. That occurs on lava plain derived from volcanic ash materials. The typifying pedon contains 5.2~6.4% oxalate extractable (Al + 1/2 Fe), over 85% phosphate retention, and lower bulk density than $0.90Mg\;m^{-3}$. Ap, BA, and Bw horizons of the pedon have andic soil properties. That can be classified as Andisol. The typifying pedon has an udic soil moisture regime and has a 1,500 kPa water retention of 15% or more on air-dried samples throughout all horizons, and can be classified as Udand. Ap and BA horizons (0~72 cm) have a color value, moist, and chroma of 2 or less, melanic index of 1.70 or less, and 6% or more organic carbon. That meets the requirements of melanic epipedon. That keys out as Melanudand. That has more than 6.0% organic carbon and the colors of mollic epipedon throughout a layer 50 cm or more thick within 60 cm of the mineral soil surface.. Thus, that keys out as Pachic Melanudand. The pedon has a fine-earth fraction that has a water content at 1,500 kPa tension of 12% or more on air-dried samples and has less than 35% (by volume) rock fragments. Thus, the substitute for particle-size class is medial. That has a sum of 8 times the Si (percnt by weight extracted by acid oxalate) plus 2 times the Fe (percnt by weight extracted by acid oxalate) of 5 or more, and 2 times the Fe is more than 8 times the Si. Thus, the mineralogy class is ferrihydritic. Namweon series can be classified as medial, ferrihydritic, thermic family of Pachic Melanudands, not as ashy, thermic family of Typic Melanudands.

Taxonomical Classification of Yongdang Series (용당통의 분류)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Moon, Kyung-Hwan;Jeon, Seung-Jong;Lim, Han-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.393-398
    • /
    • 2009
  • This study was conducted to reclassify Yongdang series based on the second edition of Soil Taxonomy : A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Morphological properties of typifying pedon of Yongdang series were investigated and physico-chemical properties were analyzed according to Soil Survey Laboratory Methods Manual. The typifying pedon of Yongdang series has dark reddish brown (5YR 2/3) silt loam Ap horizon (0~14 cm), dark brown (7.5YR 2/3) silt loam BA horizon (14~32 cm), dark brown (7.5YR 2/3) clay loam Bt horizon (32~57 cm), dark yellowish brown (10YR 4/6) silty clay loam Btx1 horizon (57~110 cm), and dark yellowish brown (10YR 4/6) silty clay loam Btx2 horizon(more than 110 cm). That occurs on gently sloping lava plain and is derived from baslt materials. The typifying pedon has an argillic horizon from a depth of 32 to more than 110 cm and a fragipan from a depth of 57 to more than 110 cm. That has a base saturation (sum of cations) of 35% or more at 75 cm below the upper boundary of the fragipan. That can be classified as Alfisol, not as Inceptisol. The typifying pedon has udic soil moisture regime, and can be classified as Udalf. That has a fragipan with an upper boundary within 100 cm of the mineral soil surface, and keys out as Fragiudalf. Also that meets the requirements of Typic Fragiudalf. That has 18% to 35% clay at the particle-size control section, and has thermic soil temperature regime. Yongdang series can be classified as fine loamy, mixed, thermic family of Typic Fragiudalfs, not as fine loamy, mixed, thermic family of Aquic Eutrudepts.

Quantitative Elemental Analysis in Soils by using Laser Induced Breakdown Spectroscopy(LIBS) (레이저유도붕괴분광법을 활용한 토양의 정량분석)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Hwang, Seon-Woong;Jin, Yong-Ik;Park, Chan-Won;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.399-407
    • /
    • 2009
  • Laser induced breakdown spectroscopy(LIBS) is an simple analysis method for directly quantifying many kinds of soil micro-elements on site using a small size of laser without pre-treatment at any property of materials(solid, liquid and gas). The purpose of this study were to find an optimum condition of the LIBS measurement including wavelengths for quantifying soil elements, to relate spectral properties to the concentration of soil elements using LIBS as a simultaneous un-breakdown quantitative analysis technology, which can be applied for the safety assessment of agricultural products and precision agriculture, and to compare the results with a standardized chemical analysis method. Soil samples classified as fine-silty, mixed, thermic Typic Hapludalf(Memphis series) from grassland and uplands in Tennessee, USA were collected, crushed, and prepared for further analysis or LIBS measurement. The samples were measured using LIBS ranged from 200 to 600 nm(0.03 nm interval) with a Nd:YAG laser at 532 nm, with a beam energy of 25 mJ per pulse, a pulse width of 5 ns, and a repetition rate of 10 Hz. The optimum wavelength(${\lambda}nm$) of LIBS for estimating soil and plant elements were 308.2 nm for Al, 428.3 nm for Ca, 247.8 nm for T-C, 438.3 nm for Fe, 766.5 nm for K, 85.2 nm for Mg, 330.2 nm for Na, 213.6 nm for P, 180.7 nm for S, 288.2 nm for Si, and 351.9 nm for Ti, respectively. Coefficients of determination($r^2$) of calibration curve using standard reference soil samples for each element from LIBS measurement were ranged from 0.863 to 0.977. In comparison with ICP-AES(Inductively coupled plasma atomic emission spectroscopy) measurement, measurement error in terms of relative standard error were calculated. Silicon dioxide(SiO2) concentration estimated from two methods showed good agreement with -3.5% of relative standard error. The relative standard errors for the other elements were high. It implies that the prediction accuracy is low which might be caused by matrix effect such as particle size and constituent of soils. It is necessary to enhance the measurement and prediction accuracy of LIBS by improving pretreatment process, standard reference soil samples, and measurement method for a reliable quantification method.

Physicochemical Properties and Hot Air-Dried and Spray-Dried Powders Process of Sweet Potato and Steamed Sweet Potato (열풍건조 및 분무건조 공정을 이용한 생 고구마와 찐 고구마 분말제조 및 물리화학적 품질특성)

  • Gu, Yul-Ri;Chae, Ho-Yong;Hong, Joo-Heon
    • Journal of Chitin and Chitosan
    • /
    • v.22 no.2
    • /
    • pp.110-117
    • /
    • 2017
  • This study was conducted to examine the physicochemical properties and hot air-dried and spray-dried powders process of sweet potato and steamed sweet potato. The moisture and the total starch contents were 1.66~2.19% and 52.65~57.42%, respectively. The total starch contents increased during process steaming. The water absorption index of the spray-dried powders (0.97 and 2.03) was lower than that of the hot air-dried powders (2.12 and 4.71), and the water solubility index of the spray-dried powders (83.83 and 86.95%) was higher than that of the hot air-dried powders (68.40 and 81.21%). The particle size and outer topology of the spray-dried powders were 46.18 and $65.53{\mu}m$, and its shape was generally globular. In the DSC analysis of this study, the $T_o$ of the spray-dried powders (64.40 and $67.80^{\circ}C$), $T_p$ of the spray-dried powders (74.40 and $78.20^{\circ}C$), and $T_c$ of the spray-dried powders (81.10 and $81.60^{\circ}C$) was higher than that of the hot air-dried powders. The solubility contents of the spray-dried powders (68.21 and 80.73%) was lower than that of the hot air-dried powders, and the swelling power contents of the spray-dried powders (14.79 and 15.35%) was higher than that of the hot air-dried powders. The amylose contents of spray-dried powders (11.67 and 12.51%) was lower than that of the hot air-dried powders. The soluble dietary fiber contents of spray-dried powders (1.34 and 2.02%) was higher than that of the hot air-dried powders.

The Study of PM10, PM2.5 Mass Extinction Efficiency Characteristics Using LIDAR Data (라이다 데이터를 이용한 PM10, PM2.5 질량소산효율 특성 연구)

  • Kim, TaeGyeong;Joo, Sohee;Kim, Gahyeong;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1793-1801
    • /
    • 2021
  • From 2015 to June 2020, the backscattering coefficients of 532 and 1064 nm measured using LIDAR and the depolarization ratio at 532 nm were used to separate the backscattering coefficient at 532 nm as three types as PM10, PM2.5-10, PM2.5 according to particle size. The mass extinction efficiency (MEE) of three types was calculated using the mass concentration measured on the ground. The overall mean values of the calculated MEE were 5.1 ± 2.5, 1.7 ± 3.7, and 9.3 ± 6.3 m2/g in PM10, PM2.5-10, and PM2.5, respectively. When the mass concentration of PM10 and PM2.5 was low, higher than average MEE was calculated, and it was confirmed that the MEE decreased as the mass concentration increased. When the MEE was calculated for each type according to the mixing degree of Asian dust, PM2.5-10 was twice at pollution aerosol as high as 2.1 ± 2.8 m2/g, compare to pollution-dominated mixture, dust-dominated mixture, and pure dust of 1.1 ± 1.8, 1.4 ± 3.3, 1.1 ± 1.5 m2/g, respectively. However, PM2.5 MEE showed similar values irrespective of type: 9.4 ± 6.5, 9.0 ± 5.8, 10.3 ± 7.5, and 9.1 ± 9.0 m2/g. The MEE of PM10 was 5.6 ± 2.9, 4.4 ± 2.0, 3.6 ± 2.9, and 2.8 ± 2.4 m2/g in pollution aerosol (PA), pollution-dominated mixture (PDM), dust-dominated mixture (DDM), and pure dust (PD), respectively, and increased as the dust ratio value decreased. Even if the same type according to the same mass concentration or Asian dust mixture was shown, as the PM2.5/PM10 ratio decreased, the MEE of PM2.5-10 decreased and the MEE of PM2.5 showed a tendency to increase.