• Title/Summary/Keyword: Particle

Search Result 15,995, Processing Time 0.044 seconds

Evaluation of Mechanical Characteristics and Concentration Target Layer Applicability of Silty Sand by Fines Content (실트질 모래의 세립분 함유율에 따른 역학적 특성 및 압밀 대상층 적용성 평가)

  • Jung-Meyon Kim;Min-Seo Kang;Jong-Joo Kim;Seung-Joo Lee;Young-Seok Kim;Chan-Young, Park;Yong-Seong, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.37-46
    • /
    • 2023
  • In this paper, the physical properties, stress deformation and strength characteristics, density and permeability characteristics of silty sand (SM) by fines content were analyzed through indoor tests. also based on the results of the indoor tests, a compact analysis was performed according to the content of SM, and the applicability of SM ground to the compacted target layer was evaluated by comparing it with the measurement data of the actual problem site. As a result of indoor tests and compression analysis, SM changed its mechanical properties from sandy soil to viscous soil when the fine particle content was 35% or higher, and using field measurement data, SM was found to have a higher compression tendency than direct subsidence. Therefore, the mechanical characteristics of SM above Fc 35% are considered to be similar to that of viscous soil, which is different from the compression characteristics of the tendency of immediate subsidence to conventional sandy soil, so it is necessary to present the mechanical characteristics of SM through further research. The research findings highlight the importance of considering consolidation settlement in silty sand (SM) when evaluating soft soil conditions. These findings can aid in revising criteria for assessing weak ground conditions by providing essential engineering property data based on varying fines content in silty sand.

Indoor PM2.5 Concentration Distribution and Health Risk Assessment according to the Implementation of a Seasonal Management System (미세먼지 계절관리제 시행 여부에 따른 실내 PM2.5 농도 분포 및 노출에 따른 건강위해성 평가)

  • Shin-Young Park;Dann-Ki Yoon;Hyeok Jang;Sung Won Yoon;Cheol-Min Lee
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.4
    • /
    • pp.218-227
    • /
    • 2023
  • Background: Since 2019, the Ministry of Environment has implemented a seasonal fine dust management system from December to March, targeting high PM2.5 levels with the aim of reducing PM2.5 concentrations and protecting public health. The focus of improving the seasonal management system lies in the atmospheric PM2.5 levels. Considering the primary goal of protecting public health, it is necessary to analyze the policy effects from an exposure perspective rather than a concentration-based approach. Objectives: This study aims to quantitatively assess the improvement of indoor PM2.5 levels and the health impacts of the seasonal management system by comparing the periods before and during its implementation in residential environments. Methods: PM2.5 concentrations within residential environments in a metropolitan area were measured using an optical particle counter (IAQ-C7, K-weather, Ltd, Korea) at one-minute intervals during the pre-implementation period (November 21~25, 2022) and during the implementation period (December 19~23, 2022). Based on the measured PM2.5 concentrations, a quantitative evaluation of cancer and mortality risks was conducted according to age and gender. Results: The results of comparing indoor and outdoor PM2.5 concentrations before and during the implementation of the seasonal management system showed a decrease of approximately 56.6% and 47.9%, respectively. Health risk assessments revealed that both the safety-limit-based and safety-target-based Hazard Quotients (HQ) exceeded the threshold of 0.1 for children under 19 years of age, both before and after the implementation. The mortality risk decreased by approximately 47.9% after the implementation, with children aged 0-9 showing the highest mortality risk at 0.9%. Conclusions: The findings of this study confirmed the positive health impacts of the seasonal management system across all age groups, particularly children under 19 who are more vulnerable to fine dust exposure.

A Study on Particle and Crystal Size Analysis of Lithium Lanthanum Titanate Powder Depending on Synthesis Methods (Sol-Gel & Solid-State reaction) (분말 합성법(Sol-Gel & Solid-State reaction)에 따른 Lithium Lanthanum Titanate 분말의 입자 및 결정 크기 비교 분석에 관한 연구)

  • Jeungjai Yun;Seung-Hwan Lee;So Hyun Baek;Yongbum Kwon;Yoseb Song;Bum Sung Kim;Bin Lee;Rhokyun Kwak;Da-Woon Jeong
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.324-331
    • /
    • 2023
  • Lithium (Li) is a key resource driving the rapid growth of the electric vehicle industry globally, with demand and prices continually on the rise. To address the limited reserves of major lithium sources such as rock and brine, research is underway on seawater Li extraction using electrodialysis and Li-ion selective membranes. Lithium lanthanum titanate (LLTO), an oxide solid electrolyte for all-solid-state batteries, is a promising Li-ion selective membrane. An important factor in enhancing its performance is employing the powder synthesis process. In this study, the LLTO powder is prepared using two synthesis methods: sol-gel reaction (SGR) and solid-state reaction (SSR). Additionally, the powder size and uniformity are compared, which are indices related to membrane performance. X-ray diffraction and scanning electron microscopy are employed for determining characterization, with crystallite size analysis through the full width at half maximum parameter for the powders prepared using the two synthetic methods. The findings reveal that the powder SGR-synthesized powder exhibits smaller and more uniform characteristics (0.68 times smaller crystal size) than its SSR counterpart. This discovery lays the groundwork for optimizing the powder manufacturing process of LLTO membranes, making them more suitable for various applications, including manufacturing high-performance membranes or mass production of membranes.

Environmental Maintenance Technology for Concrete Manufacturing Industry by Using an Automatic Fugitive Dust Reduction System (비산먼지 자동 저감시스템을 이용한 콘크리트 제조업 환경 유지관리 기술)

  • Hyun-Woo Cho;Yoon-Seok Chung;Deuk-Hyun Ryu;Yun-Yong Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.70-77
    • /
    • 2023
  • Fine dust is a cause of serious ecological problems, and fugitive dust generated from construction sites is a major source of fine dust in Korea. However, at construction sites, including concrete manufacturing industry sites, measurements are rarely made at the fugitive dust generation stage, and passive removal methods are the majority. Therefore, in this study, a fugitive dust measurement method suitable for managing fugitive dust generated during aggregate unloading in the concrete manufacturing industry sites was selected. In addition, the purpose was to analyze the amount of fugitive dust reduction according to the operation of the reduction system by applying the automatic fugitive dust reduction system to the aggregate unloading site. As a result, the reliability of the light scattering method was secured through the comparative measurement of the beta-ray absorption method and the light scattering method, and the light scattering method correction coefficient was calculated and applied to the measured value of the fugitive dust particle mass concentration at the concrete manufacturing industry sites. In addition, the fugitive dust reduction rate according to the operation of the automatic fugitive dust reduction system was derived.

Experimental Study on the Effect of Degree of Saturation on the Electrical Conductivity of Soils (포화도에 따른 흙의 전기전도도 변화에 대한 실험적 연구)

  • Ko, Hyojung;Choo, Hyunwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.8
    • /
    • pp.29-39
    • /
    • 2023
  • The degree of saturation determines the connectivity of void space and the particle surface. Thus, it greatly affects the electrical conductivity of soils. This study aimed to analyze the electrical conductivities of coarse grains with a high relevance of pore water conduction and fine grains with a high relevance of surface conduction based on the degree of saturation. It also aimed to express the electrical conductivity of unsaturated soils as a combination of surface and pore water conductions using the modified Archie's equation. Samples were prepared in a plastic cell equipped with four electrodes, and the electrical conductivity was measured based on the porosity at various degrees of saturation (40%~100%). The results demonstrate that Archie's equation can be used to express the electrical conductivity of coarse grains, with a saturation exponent of ~1.93 regardless of the pore water conductivity. However, the saturation exponent of fine grains varied considerably with pore water concentration. This variation can be attributed to the relative magnitude of surface conduction with respect to the electrical conductivity of soils at different pore water concentrations. Thus, the degree of saturation has varying effects on pore water conduction and surface conduction. Therefore, different saturation exponents must be used for pore water conduction and surface conduction to predict the electrical conductivity of unsaturated soils using the modified Archie's equation.

Evaluation of Characteristics of Sludge generated from Active Treatment System of Mine Drainage (광산배수의 적극적 처리시설에서 발생하는 슬러지 특성 평가)

  • Jung-Eun Kim;Won Hyun Ji
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.409-419
    • /
    • 2023
  • Acid mine drainage(AMD) treatment is classified as both passive and active treatment. During the treatment, about 5,000 tons of neutralization sludge is generated as a by-product per year in Korea. This study was conducted to evaluate the characteristics of sludge generated from physico·chemical treatment processes as an active treatment from 5 different sources (D, H, S, T, Y) and the possibility of the sludges being recycled. The sludges have a pH range of 5.86 ~ pH 7.89, and a water content range of 51% ~ 82%. Most of particle sizes were less than 25 ㎛. In analysis of inorganic elements, the concentration of Al, Fe, and Mn were between 1,189 mg/kg ~ 129,344 mg/kg, 106,132 mg/kg ~ 338,011 mg/kg, and 3,472 mg/kg ~ 11,743 mg/kg, respectively. The concentration of As and Zn in sludge-T, Cd in sludge-D, Ni in sludge-H, Zn in sludge-S, and Cd in sludge-Y exceeded the soil contamination standards of Korea. The results from 2 separate kinds of leaching test, the Korea Standard Leaching Test(KSLT) and Toxicity Characteristic Leaching Procedure(TCLP), showed that all the sludges met the Korea groundwater standards. From the XRD and SEM-EDS analysis, the peaks of calcite and quartz were found in the sludges. The sludge also had a high proportion of Fe and O, and the majority of the composition was amorphous iron hydroxide.

A Report on Patterned Ground in the Baekdusan (백두산 일대에 나타나는 구조토 보고)

  • CHOI, In-Sook;SEONG, Yeong Bae;KIM, Jong Wook;PARK, Seung-Phil;LI, Chun Jing
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.1
    • /
    • pp.59-72
    • /
    • 2010
  • This study is based on the observation on the patterned ground found in the northern part of the Baekdusan during two fieldtrips of 2008 summer. The patterned grounds are found in two areas-Dalmun and Socheonji. The patterned ground found around Dalmun are well-sorted, having fine materials in the center and coarse (boulder size) materials in the rim, and stretching in the form of stairs. Meanwhile, the types of patterned ground found around Socheonji are various, including polygon, stripe, and circular patterns. The particle size analysis and morphological analysis of comprising materials are carried out only for the patterned ground of Socheonji. The mean short and long axis of the patterned grounds are 91cm and 163cm, respectively. The distribution pattern of material size from the most samples increase toward the rim, indicating the patterned grounds are well-sorted. The comprising materials are dominated by silt, which is very susceptible for freeze-thaw cycle. The lower ratio of clay (low less than 10%), suggests that physical weathering is more dominant rather than chemical weathering. The involution structure found in the vertical section of the patterned grounds is likely to have formed by active cryoturbation which is one of the dominant geomorphic processes in the periglacial environments like the study area.

Gas Hydrate Phase Equilibria of $CO_2+H_2$ Mixture in Silica Gel Pores for the Development of Pre-combustion Capture (연소 전 이산화탄소 회수기술을 위한 실리카겔 공극 내에서의 이산화탄소+수소 혼합가스 하이드레이트의 상평형)

  • Kang, Seong-Pil;Jang, Won-Ho;Jo, Wan-Keun
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.258-264
    • /
    • 2009
  • Thermodynamic measurements were performed to show the possibility of recovering $CO_2$ from fuel gas (the mixture of $CO_2$ and $H_2$) by forming gas hydrates with water where water was dispersed in the pores of silica gel particles having nominal 100 nm of pore diameter. The hydrate-phase equilibria for the ternary $CO_2+H_2$+water in pores were measured and $CO_2$ concentrations in vapor and hydrate phase were determined under the hydrate-vapor two phase region at constant 274.15 K. It was shown that the inhibition effect appeared due to silica gel pores, and the corresponding equilibrium dissociation pressures became higher than those of bulk water hydrates at a specific temperature. In addition, direct measurement of $CO_2$ content in the hydrate phase showed that the retrieved gas from the dissociation of hydrate contained more than 95 mol% of $CO_2$ when 42 mol% of $CO_2$ and balanced Hz mixture was applied. Compared with data obtained in case of bulk water hydrates, which showed just 83 mol% of $CO_2$ where 2-stage hydrate slurry reactor was intended to utilize this property, the hydrate formation in porous silica gel has enhanced the feasibility of $CO_2$ separation process. Hydrate formation as not for slurry but solid particle makes it possible to used fixed bed reactor, and can be a merit of well-understood technologies in the industrial field.

Production of Methane from Anaerobic Fermentation of Marine Macro-algae (해조류의 혐기성 발효를 이용한 메탄 생산)

  • Kim, Jeong-Min;Lee, Yeung-Ho;Jung, Sung-Hoon;Lee, Jin-Tae;Cho, Moo-Hwan
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.51-58
    • /
    • 2010
  • Methane was produced from the anaerobic digestion of marine macro-algae. Elemental analysis was first performed to estimate the theoretical methane production of three macro-algae (Undaria pinnatifida, Laminaria japonica, Hizikia fusiformis). Three algae were found to contain C 34 ~ 36%, H 5%, O 37 ~ 43%, N 2 ~ 4%, S 0.4 ~ 0.7%, and ash 14~21%, and the theoretical methane content was in the range of 56 ~ 60%, which can produce 442 ~ 568 mL $CH_4$ per g of volatile solid (VS). Using the biological methane potential (BMP) test, we found that L. japonica resulted in the highest yield of methane (52%). Moreover, various operational conditions, such as algae amount, pH, salinity, particle size, and pre-treatment, were investigated in order to find an optimal condition of anaerobic digestion. At pH 8.0, the autoclaved L. japonica (5g VS/200 mL), when used without washing salt, produced 268.5 mL/g VS which is 65% of the theoretical methane productions. Furthermore, using a CSTR (with the working volume of 7 L out of the total volume of 10 L), we have successfully operated the reactor for 65 days and obtained maximum methane production rate of 1.4 L/day with purity of 70%.

An Experimental Study on the Energy Separation of the $100Nm^3$/hr Vortex Tube for $CO_2$ Absorption ($CO_2$ 흡수용 $100Nm^3$/hr급 Vortex Tube의 에너지분리 특성에 관한 실험적 연구)

  • Kim, Chang-Su;Han, Keun-Hee;Park, Sung-Young
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.213-219
    • /
    • 2010
  • Vortex tube is the device that can separate small particles from the compressed gas, as well as compressed gas into hot and cold gas. Due to energy and particle separation ability, a vortex tube can be used as the main component of the $CO_2$ absorption device. In this study, experimental approach has been performed to analyze the energy separation characteristics of the vortex tube. To obtain the preliminary design data, energy separation characteristics of the vortex tube has been tested for orifice diameter, nozzle area ratio, and tube length. As a result, the orifice diameter is the major factor of the vortex tube design. The nozzle area ratio and tube length have a minor effect on the energy separation performance. For Dc=0.6D, AR=0.14~0.16, and L=16D, maximum energy separation has been occurred. The result from this study can be used as the basic design data of the $100Nm^3$/hr class vortex tube applied to the $CO_2$ absorption device. Compared with the $CO_2$ absorption process containing an absorption tower, the process with a vortex tube is expected to have a huge advantage of saving the installation space and the operating cost.