• 제목/요약/키워드: Partially embedded pile

검색결과 9건 처리시간 0.025초

Buckling analysis of semi-rigid connected and partially embedded pile in elastic soil using differential transform method

  • Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.971-995
    • /
    • 2014
  • The parts of semi-rigid connected and partially embedded piles in elastic soil, above the soil and embedded in the soil are called the first region and second region, respectively. The upper end of the pile in the first region is supported by linear-elastic rotational spring. The forth order differential equations of both region for critical buckling load of partially embedded and semi-rigid connected pile with shear deformation are established using small-displacement theory and Winkler hypothesis. These differential equations are solved by differential transform method (DTM) and analytical method and critical buckling loads of semirigid connected and partially embedded pile are obtained, results are given in tables and graphs are presented for investigating the effects of relative stiffness of the pile and flexibility of rotational spring.

Buckling analysis of partially embedded pile in elastic soil using differential transform method

  • Catal, Seval;Catal, Hikmet Huseyin
    • Structural Engineering and Mechanics
    • /
    • 제24권2호
    • /
    • pp.247-268
    • /
    • 2006
  • The parts of pile, above the soil and embedded in the soil are called the first region and second region, respectively. The forth order differential equations of both region for critical buckling load of partially embedded pile with shear deformation are obtained using the small-displacement theory and Winkler hypothesis. It is assumed that the behavior of material of the pile is linear-elastic and that axial force along the pile length and modulus of subgrade reaction for the second region to be constant. Shear effect is included in the differential equations by considering shear deformation in the second derivative of the elastic curve function. Critical buckling loads of the pile are calculated for by differential transform method (DTM) and analytical method, results are given in tables and variation of critical buckling loads corresponding to relative stiffness of the pile are presented in graphs.

Post-buckling analysis of piles by perturbation method

  • Zhao, M.H.;He, W.;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • 제35권2호
    • /
    • pp.191-203
    • /
    • 2010
  • To investigate the critical buckling load and post-buckling behavior of an axially loaded pile entirely embedded in soil, the non-linear large deflection differential equation for a pinned pile, based on the Winkler-model and the discretionary distribution function of the foundation coefficient along pile shaft, was established by energy method. Assuming that the deflection function was a power series of some perturbation parameter according to the boundary condition and load in the pile, the non-linear large deflection differential equation was transformed to a series of linear differential equations by using perturbation approach. By taking the perturbation parameter at middle deflection, the higher-order asymptotic solution of load-deflection was then found. Effect of ratios of soil depth to pile length, and ratios of pile stiffness to soil stiffness on the critical buckling load and performance of piles (entirely embedded and partially embedded) after flexural buckling were analyzed. Results show that the buckling load capacity increases as the ratios of pile stiffness to soil stiffness increasing. The pile performance will be more stable when ratios of soil depth to pile length, and soil stiffness to pile stiffness decrease.

Dynamic analysis of semi-rigidly connected and partially embedded piles via the method of reverberation-ray matrix

  • Yan, Wei;Chen, W.Q.
    • Structural Engineering and Mechanics
    • /
    • 제42권2호
    • /
    • pp.269-289
    • /
    • 2012
  • Free vibration and dynamic responses of piles semi-rigidly connected with the superstructures are investigated. Timoshenko beam theory is employed to characterize the pile partially embedded in a two-parameter elastic foundation. The formulations for the method of reverberation-ray matrix (MRRM) are then derived to investigate the dynamics of the pile with surface cracks, which are modeled as massless rotational springs. Comparison with existent numerical and experimental results indicates the proposed method is very effective and accurate for dynamic analysis, especially in the high frequency range. Finally, the effects of some physical parameters on the natural frequencies, frequency responses and transient responses of the piles are studied.

자중효과를 고려한 말뚝의 좌굴하중 (Buckling Loads of Piles with Allowance for Self-Weight)

  • 이준규;이광우;전영진;권오일;최용혁;최정식
    • 대한토목학회논문집
    • /
    • 제43권2호
    • /
    • pp.187-193
    • /
    • 2023
  • 이 논문은 말뚝체의 자중을 고려한 말뚝의 좌굴거동에 관한 연구이다. 비균질 지반에 설치된 부분매립 말뚝의 좌굴을 지배하는 미분방정식과 경계조건을 유도하였다. Runge-Kutta법과 Regula-Falsi법을 결합한 수치해석법을 적용하여 말뚝의 좌굴하중과 좌굴형을 산정하였다. 계산된 좌굴하중의 수치해와 문헌값은 잘 일치하였고, 수치예를 통해 말뚝의 자중, 매립비, 세장비, 경계조건 및 지반의 반력형상비, 지반강성비가 말뚝의 좌굴특성에 미치는 영향을 분석하였다. 분석결과, 말뚝의 자중은 말뚝의 좌굴하중을 감소시켰으며 이러한 자중효과의 무시는 부분매립 말뚝의 좌굴하중을 과대평가할 수 있음을 확인하였다.

부분근입된 말뚝의 자유진동 특성 (Free Vibration Characteristics of Partially Embedded Piles)

  • 신성철;진태기;오상진;박광규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.435-440
    • /
    • 2002
  • The free vibration of partially embedded piles is investigated. The pile model is based on the Bernoulli-Euler beam theory and the soil is idealized as a Winkler model for mathematical simplicity. The governing differential equation for the free vibrations of such members is solved numerically The piles with one typical end constraint (clamped/hinged/free) and the other hinged end with rotational spring are applied in numerical examples. The lowest three natural frequencies are calculated over a range of non-dimensional system parameters: the rotational spring parameter, the relative stiffness and the embedded ratio.

  • PDF

Buckling of fully and partially embedded non-prismatic columns using differential quadrature and differential transformation methods

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • 제28권2호
    • /
    • pp.221-238
    • /
    • 2008
  • Numerical solution to buckling analysis of beams and columns are obtained by the method of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for various support conditions considering the variation of flexural rigidity. The solution technique is applied to find the buckling load of fully or partially embedded columns such as piles. A simple semi- inverse method of DQ or HDQ is proposed for determining the flexural rigidities at various sections of non-prismatic column ( pile) partially and fully embedded given the buckling load, buckled shape and sub-grade reaction of the soil. The obtained results are compared with the existing solutions available from other numerical methods and analytical results. In addition, this paper also uses a recently developed technique, known as the differential transformation (DT) to determine the critical buckling load of fully or partially supported heavy prismatic piles as well as fully supported non-prismatic piles. In solving the problem, governing differential equation is converted to algebraic equations using differential transformation methods (DT) which must be solved together with applied boundary conditions. The symbolic programming package, Mathematica is ideally suitable to solve such recursive equations by considering fairly large number of terms.

상단 집중질량을 갖는 근입 말뚝의 진동 특성 (Vibration Characteristics of Embedded Piles Carrying a Tip Mass)

  • 최동찬;변요셉;오상진;천병식
    • 한국소음진동공학회논문집
    • /
    • 제20권4호
    • /
    • pp.405-413
    • /
    • 2010
  • The vibration characteristics of fully and partially embedded piles with flexibly supported end carrying an eccentric tip mass are investigated. The pile model is based on the Bernoulli-Euler theory and the soil is idealized as a Winkler model for mathematical simplicity. The governing differential equations for the free vibrations of such members are solved numerically using the corresponding boundary conditions. The lowest three natural frequencies and corresponding mode shapes are calculated over a wide range of non-dimensional system parameters: the rotational spring parameter, the relative stiffness, the embedded ratio, the mass ratio, the dimensionless mass moment of inertia, and the tip mass eccentricity.

구조물 내진설계를 위한 기초지반체계 동특성에 관한 연구 (Study on the Dynamic Characteristics of Foundation-Soil System for the Seismic Analysis of Structures)

  • 김용석
    • 한국지진공학회논문집
    • /
    • 제1권3호
    • /
    • pp.1-10
    • /
    • 1997
  • 구조물 동적거동이 지반과 기초 특성에 따라 영향을 받는다는 것은 인식되었지만, 구조물 내진설계를 위한 설계규준이 지반의 본질적인 복잡성과 기초-지반체계에 대한 체계적인 연구부족으로 지반특성을 부분적으로만 반영하고 있어 불안전하거나 너무 안전한 결과를 초래한다. 이 연구에서는 전단파속도, 지반깊이, 기초 근입깊이 및 말뚝기초의 영향을 평가하여 구조물 내진해석을 위한 기초-지반체계의 운동학적 상호작용 영향을 고찰하였으며, 지반과 기초 특성을 고려한 합리적 내진해석을 위해 지반체계에 대한 수정된 분류기준을 제안하였다. 말뚝기초를 포함한 중형이나 대형 묻힌기초의 경우, 지초-지반체계의 운동학적 상호작용 영향을 고려하기 위해서는 기토밑 지반깊이를 최소한 60m 까지 고려해야하고, 말뚝유무에 관계없이 기초-지반체계의 회전운동도 구조물 내진해석에 포함되어야 한다.

  • PDF