• Title/Summary/Keyword: Partially Observable Markov decision process (POMDP)

Search Result 15, Processing Time 0.021 seconds

Multimodal Dialog System Using Hidden Information State Dialog Manager (Hidden Information State 대화 관리자를 이용한 멀티모달 대화시스템)

  • Kim, Kyung-Duk;Lee, Geun-Bae
    • Proceedings of the KSPS conference
    • /
    • 2007.05a
    • /
    • pp.29-32
    • /
    • 2007
  • This paper describes a multimodal dialog system that uses Hidden Information State (HIS) method to manage the human-machine dialog. HIS dialog manager is a variation of classic partially observable Markov decision process (POMDP), which provides one of the stochastic dialog modeling frameworks. Because dialog modeling using conventional POMDP requires very large size of state space, it has been hard to apply POMDP to the real domain of dialog system. In HIS dialog manager, system groups the belief states to reduce the size of state space, so that HIS dialog manager can be used in real world domain of dialog system. We adapted this HIS method to Smart-home domain multimodal dialog system.

  • PDF

A Study of Adaptive QoS Routing scheme using Policy-gradient Reinforcement Learning (정책 기울기 값 강화학습을 이용한 적응적인 QoS 라우팅 기법 연구)

  • Han, Jeong-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.93-99
    • /
    • 2011
  • In this paper, we propose a policy-gradient routing scheme under Reinforcement Learning that can be used adaptive QoS routing. A policy-gradient RL routing can provide fast learning of network environments as using optimal policy adapted average estimate rewards gradient values. This technique shows that fast of learning network environments results in high success rate of routing. For prove it, we simulate and compare with three different schemes.

Real-time human detection method based on quadrupedal walking robot (4족 보행 로봇 기반의 실시간 사람 검출 방법)

  • Han, Seong-Min;Yu, Sang-jung;Lee, Geon;Pak, Myeong-Suk;Kim, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.468-470
    • /
    • 2022
  • 본 논문은 강화학습 POMDP(Partially Observable Markov Decision Process) 알고리즘을 사용하여 자갈밭과 같은 비평탄 지형을 극복하는 4족 보행 지능로봇을 설계하고 딥러닝 기법을 사용하여 사람을 검출한다. 로봇의 임베디드 환경에서 1단계 검출 알고리즘인 YOLO-v7과 SSD의 기본 모델, 경량 또는 네트워크 교체 모델의 성능을 비교하고 선정된 SSD MobileNet-v2의 검출 속도를 개선하기 위해 TensorRT를 사용하여 최적화를 진행하였다

Smartphone-User Interactive based Self Developing Place-Time-Activity Coupled Prediction Method for Daily Routine Planning System (일상생활 계획을 위한 스마트폰-사용자 상호작용 기반 지속 발전 가능한 사용자 맞춤 위치-시간-행동 추론 방법)

  • Lee, Beom-Jin;Kim, Jiseob;Ryu, Je-Hwan;Heo, Min-Oh;Kim, Joo-Seuk;Zhang, Byoung-Tak
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.2
    • /
    • pp.154-159
    • /
    • 2015
  • Over the past few years, user needs in the smartphone application market have been shifted from diversity toward intelligence. Here, we propose a novel cognitive agent that plans the daily routines of users using the lifelog data collected by the smart phones of individuals. The proposed method first employs DPGMM (Dirichlet Process Gaussian Mixture Model) to automatically extract the users' POI (Point of Interest) from the lifelog data. After extraction, the POI and other meaningful features such as GPS, the user's activity label extracted from the log data is then used to learn the patterns of the user's daily routine by POMDP (Partially Observable Markov Decision Process). To determine the significant patterns within the user's time dependent patterns, collaboration was made with the SNS application Foursquare to record the locations visited by the user and the activities that the user had performed. The method was evaluated by predicting the daily routine of seven users with 3300 feedback data. Experimental results showed that daily routine scheduling can be established after seven days of lifelogged data and feedback data have been collected, demonstrating the potential of the new method of place-time-activity coupled daily routine planning systems in the intelligence application market.

POMDP Based Trustworthy Android App Recommendation Services (부분적 관찰정보기반 견고한 안드로이드 앱 추천 기법)

  • Oh, Hayoung;Goo, EunHee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.6
    • /
    • pp.1499-1506
    • /
    • 2017
  • The use of smartphones and the launch of various apps have increased exponentially, and malicious apps have also increased. Existing app recommendation systems have been limited to operate based on static information analysis such as ratings, comments, and popularity categories of other users who are online. In this paper, we first propose a robust app recommendation system that realistically uses dynamic information of apps actually used in smartphone and considers static information and dynamic information at the same time. In other words, this paper proposes a robust Android app recommendation system by partially reflecting the time of the app, the frequency of use of the app, the interaction between the app and the app, and the number of contact with the Android kernel. As a result of the performance evaluation, the proposed method proved to be a robust and efficient app recommendation system.