• Title/Summary/Keyword: Partial volume effect

Search Result 115, Processing Time 0.035 seconds

An Analysis of Production and Marketing Control Effect of Aqua-cultured Flounder Using Supply and Demand Models (수급모형을 이용한 양식넙치의 생산 및 출하조절 효과분석)

  • Ko, Bong-Hyun
    • The Journal of Fisheries Business Administration
    • /
    • v.47 no.4
    • /
    • pp.65-75
    • /
    • 2016
  • The purpose of this study was to analyze the production and marketing control effects of aqua-cultured flounder required for stable income growth of aqua-cultured household. We analyzed the supply and demand structure of cultured flounder using the partial equilibrium model approach. And we estimated the optimal yield of cultured flounder and analyzed the effect of marketing control through constructed model. The main results of this study are summarized as follows. First, the fitness and predictive power of the estimated model showed that the RMSPE and MAPE values were less than 5% and Theil's inequality coefficient was very close to 0 rather than 1. It was evaluated that the prediction ability of the aqua-cultured flounder supply and demand model by dynamic simulation was excellent. Second, dynamic simulation based on policy simulation was conducted to analyze the price increase effect of production and shipment control of cultured flounder. As a result, if the annual production volume is reduced by 1%, 5%, and 10% among 32,852~37,520 tons, it is analyzed that the price increase effect is from 1.2% to 12.5%. Finally, this study suggests that the production and marketing control can increase the price of aqua-cultured flounder in the market. In this paper, we propose a policy implementation of the total supply system instead of conclusions.

Effect of Isolated Soy Protein on Sponge Cake Quality (분리대두단백이 스폰지 케일의 품질에 미치는 영향)

  • 이경애
    • Korean journal of food and cookery science
    • /
    • v.13 no.3
    • /
    • pp.299-303
    • /
    • 1997
  • The effects of partial replacement of flour with isolated soy protein (ISP) on sponge cake quality were investigated. The replacement did not cause any significant changes in physical characteristics of sponge cakes including specific gravity, specific volume and expansion ratio. As the level of ISP replacement increased, the sponge cakes were darker in color, harder, chewier and drier than control groups. The textural characteristics (hardness, cohesiveness, springiness, gumminess and chewiness) of the sponge cakes also increased as the level of flour replacement increased. Up to 15% of the flour could be replaced by ISP without diminishing the sponge cake quality.

  • PDF

MR-based Partial Volume Correction Using Hoffman Brain Phantom Data and Clinical Application (자기공명영상을 이용한 양전자방출단층촬영의 부분용적효과 보정 및 임상적용)

  • 김동현;이상호;정해조;윤미진;이종두;김희중
    • Progress in Medical Physics
    • /
    • v.14 no.3
    • /
    • pp.203-210
    • /
    • 2003
  • PET (positron emission tomography) permits the investigation of physiological and biochemical processes in vivo. The accuracy of quantifying PET data is affected by its finite spatial resolution, which causes partial volume effects. In this study, we developed a method for partial volume correction using Hoffman phantom PET and MR data, and applied various FWHM (full width at half maximum) levels. We also applied this method to PET images of normal controls and tested for the possibility of clinical application. $^{18}$ F-PET Hoffman phantom images were co-registered to MR slices. The gray matter and white matter regions were then segmented into binary images. Each binary image was convolved by 4, 8, 12, 16 mm FWHM levels. These convolved images of gray and white matter were merged corresponding to the same level of FWHM. The original PET images were then divided by the convolved binary images voxel-by-voxel. These corrected PET images were multiplied by binary images. The corrected PET images were evaluated by analyzing regions of interests, which were drawn on the gray and white matter regions of the original MR image slices. We calculated the ratio of white to gray matter. We also applied this method to the PET images of normal controls. On analyzing the corrected PET images of Hoffman phantom, the ratios of the corrected images increased more than that of the uncorrected images. With the normal controls, the ratio of the corrected images increased more than that of the uncorrected images. The ratio increase of the corrected PET images was lower than that of the corrected phantom PET images. In conclusion, the method developed for partial volume correction in PET data may be clinically applied, although further study may be required for optimal correction.

  • PDF

Mechanical Properties of Granite Soil Concrete with Polypropylene Fiber (폴리프로필렌 섬유보강 화강토 콘크리트의 역학적 특성)

  • Nam, Ki Sung;Jun, Hyung Soon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • This study will not only prove experimental dynamic properties which are classified to slump, compressive strength, tensile strength, flexure strength and toughness granite soil concrete with a fine aggregate of granite soil and blast-furnace cement and polypropylene fiber over 45 mm, but also establish a basic data in order to use environment-friendly pavement through prove useful pavement mixed with granite and polypropylene (PP) fiber which is a kind of material to prevent a dry shrinkage clack, a partial destruction and useful and light. The value of slump test was gradually increased by PP fiber volume 3 $kgf/m^3$, but compressive strength took a sudden turn for the worse from 5 $kgf/m^3$. The compressive strength indicated a range of 13.72~18.35 MPa. On the contrary to compressive strength, the tensile strength showed to decrease with rising PP fiber volume, and the tensile strength indicated a range of 1.43~1.64 MPa. The tensile strength was stronger about 2~15 % in case of mixing with PP fiber volume than normal concrete. The flexural strength indicated a range of 2.76~3.41 MPa. The flexural strength was stronger about 20 % in case of PP fiber volume 0 $kg/m^3$ than PP fiber volume 9 $kg/m^3$. The toughness indicated a range of 0~25.46 $N{\cdot}mm$ and increased proportionally with PP fiber volume. The toughness was stronger about 8.3 times in case of PP fiber volume 9 $kg/m^3$ than PP fiber volume 1 $kg/m^3$. The pavement with PP fiber volume over such a fixed quantity in the park roads and walkways can have a effect to prevent not only resistance against clack but also rip off failures.

A Refined Method for Quantification of Myocardial Blood Flow using N-13 Ammonia and Dynamic PET (N-13 암모니아와 양전자방출단층촬영 동적영상을 이용하여 심근혈류량을 정량화하는 새로운 방법 개발에 관한 연구)

  • Kim, Joon-Young;Lee, Kyung-Han;Kim, Sang-Eun;Choe, Yearn-Seong;Ju, Hee-Kyung;Kim, Yong-Jin;Kim, Byung-Tae;Choi, Yong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.1
    • /
    • pp.73-82
    • /
    • 1997
  • Regional myocardial blood flow (rMBF) can be noninvasively quantified using N-13 ammonia and dynamic positron emission tomography (PET). The quantitative accuracy of the rMBF values, however, is affected by the distortion of myocardial PET images caused by finite PET image resolution and cardiac motion. Although different methods have been developed to correct the distortion typically classified as partial volume effect and spillover, the methods are too complex to employ in a routine clinical environment. We have developed a refined method incorporating a geometric model of the volume representation of a region-of-interest (ROI) into the two-compartment N-13 ammonia model. In the refined model, partial volume effect and spillover are conveniently corrected by an additional parameter in the mathematical model. To examine the accuracy of this approach, studies were performed in 9 coronary artery disease patients. Dynamic transaxial images (16 frames) were acquired with a GE $Advance^{TM}$ PET scanner simultaneous with intravenous injection of 20 mCi N-13 ammonia. rMBF was examined at rest and during pharmacologically (dipyridamole) induced coronary hyperemia. Three sectorial myocardium (septum, anterior wall and lateral wall) and blood pool time-activity curves were generated using dynamic images from manually drawn ROIs. The accuracy of rMBF values estimated by the refined method was examined by comparing to the values estimated using the conventional two-compartment model without partial volume effect correction rMBF values obtained by the refined method linearly correlated with rMBF values obtained by the conventional method (108 myocardial segments, correlation coefficient (r)=0.88). Additionally, underestimated rMBF values by the conventional method due to partial volume effect were corrected by theoretically predicted amount in the refined method (slope(m)=1.57). Spillover fraction estimated by the two methods agreed well (r=1.00, m=0.98). In conclusion, accurate rMBF values can be efficiently quantified by the refined method incorporating myocardium geometric information into the two-compartment model using N-13 ammonia and PET.

  • PDF

The Pressure Effect on the Ionization of m-Chloroanilinium Ion in Sodiumacetate Buffer Solution

  • Jee ,Jong-Gi;Lee, Young-Hwa;Kwak, Young-Jik
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.5
    • /
    • pp.266-269
    • /
    • 1985
  • The dissociation constants(K) of m-chloroanilinium ion in water-ethanol mixture, where the volume percentage of water is 89.5%, were evaluated by UV-spectroscopic method at $20{\sim}50^{\circ}C$, up to 1500 bars with changing ionic strength from 0.04 to 0.10 mol $kg^{-1}$ by use of acetate buffer. K values enhance with increasing ionic strength and temperature, but decrease with elevating pressure. From K values, we obtained the partial molar volume change and some other thermodynamic parameters. From the values of enthalpy, entropy and isoequilibrium temperature (649 K), we concluded that the dissociation of m-chloroanilinium ion mentioned above is controlled by enthalpy.

Influence of the distribution pattern of porosity on the free vibration of functionally graded plates

  • Hadji, Lazreg;Fallah, Ali;Aghdam, Mohammad Mohammadi
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.151-161
    • /
    • 2022
  • In this study, the effect of porosity distribution pattern on the free vibration analysis of porous FG plates with various boundary conditions is studied. The material properties of the plate and the porosities within the plate are considered to vary continuously through the thickness direction according to the volume fraction of constituents defined by the modified rule of the mixture, this includes porosity volume fraction with four different types of porosity distribution over the cross-section. The governing partial differential equation of motion for the free vibration analysis is obtained using hyperbolic shear deformation theory. An analytical solution is presented for the governing PDEs for various boundary conditions. Results of the presented solution are compared and validated by the available results in the literature. Moreover, the effects of material and porosity distribution and geometrical parameters on vibrational properties are investigated.

Superharmonic and subharmonic resonances of a carbon nanotube-reinforced composite beam

  • Alimoradzadeh, M.;Akbas, S.D.
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.353-363
    • /
    • 2022
  • This paper presents an investigation about superharmonic and subharmonic resonances of a carbon nanotube reinforced composite beam subjected to lateral harmonic load with damping effect based on the modified couple stress theory. As reinforcing phase, three different types of single walled carbon nanotubes (CNTs) distribution are considered through the thickness in polymeric matrix. The governing nonlinear dynamic equation is derived based on the von Kármán nonlinearity with using of Hamilton's principle. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. Effects of different patterns of reinforcement, volume fraction, excitation force and the length scale parameter on the frequency-response curves of the carbon nanotube reinforced composite beam are investigated. The results show that volume fraction and the distribution of CNTs play an important role on superharmonic and subharmonic resonances of the carbon nanotube reinforced composite beams.

Effect of micro-silica on mechanical and durability properties of high volume fly ash recycled aggregate concretes (HVFA-RAC)

  • Shaikh, Faiz;Kerai, Sachin;Kerai, Shailesh
    • Advances in concrete construction
    • /
    • v.3 no.4
    • /
    • pp.317-331
    • /
    • 2015
  • This paper presents the effect of different micro-silica (MS) contents of 5, 10 and 15 wt.% as partial replacement of cement on mechanical and durability properties of high volume fly ash - recycled aggregate concretes (HVFA-RAC) containing 50% class F fly ash (FA) and 35% recycled coarse aggregate (RCA) as partial replacement of cement and natural coarse aggregate (NCA), respectively. The measured mechanical and durability properties are compressive strength, indirect tensile strength, elastic modulus, drying shrinkage, water sorptivity and chloride permeability. The effects of different curing ages of 7, 28, 56 and 91 days on above properties are also considered in this study. The results show that the addition of MS up to 10% improved the early age (7 days) strength properties of HVFA-RAC, however, at later ages (e.g. 28-91 days) the above mechanical properties are improved for all MS contents. The 5% MS exhibited the best performance among all MS contents for all mechanical properties of HVFA-RAC. In the case of measured durability properties, mix results are obtained, where 10% and 5% MS exhibited the lowest sorptivity and drying shrinkage, respectively at all ages. However, in the case of chloride ion permeability a decreasing trend is observed with increase in MS contents and curing ages. Strong correlations of indirect tensile strength and modulus of elasticity with square root of compressive strength are also observed in HVFA-RAC. Nevertheless, it is established in this study that MS contributes to the sustainability of HVFA-RAC significantly by improving the mechanical and durability properties of concrete containing 50%less cement and 35% less natural coarse aggregates.

Spiral scanning imaging and quantitative calculation of the 3-dimensional screw-shaped bone-implant interface on micro-computed tomography

  • Choi, Jung-Yoo Chesaria;Choi, Cham Albert;Yeo, In-Sung Luke
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.4
    • /
    • pp.202-212
    • /
    • 2018
  • Purpose: Bone-to-implant contact (BIC) is difficult to measure on micro-computed tomography (CT) because of artifacts that hinder accurate differentiation of the bone and implant. This study presents an advanced algorithm for measuring BIC in micro-CT acquisitions using a spiral scanning technique, with improved differentiation of bone and implant materials. Methods: Five sandblasted, large-grit, acid-etched implants were used. Three implants were subjected to surface analysis, and 2 were inserted into a New Zealand white rabbit, with each tibia receiving 1 implant. The rabbit was sacrificed after 28 days. The en bloc specimens were subjected to spiral (SkyScan 1275, Bruker) and round (SkyScan 1172, SkyScan 1275) micro-CT scanning to evaluate differences in the images resulting from the different scanning techniques. The partial volume effect (PVE) was optimized as much as possible. BIC was measured with both round and spiral scanning on the SkyScan 1275, and the results were compared. Results: Compared with the round micro-CT scanning, the spiral scanning showed much clearer images. In addition, the PVE was optimized, which allowed accurate BIC measurements to be made. Round scanning on the SkyScan 1275 resulted in higher BIC measurements than spiral scanning on the same machine; however, the higher measurements on round scanning were confirmed to be false, and were found to be the result of artifacts in the void, rather than bone. Conclusions: The results of this study indicate that spiral scanning can reduce metal artifacts, thereby allowing clear differentiation of bone and implant. Moreover, the PVE, which is a factor that inevitably hinders accurate BIC measurements, was optimized through an advanced algorithm.