• Title/Summary/Keyword: Partial transmit sequence (PTS)

Search Result 33, Processing Time 0.017 seconds

A New Signal Processing Technique for Improving PAPR performance (PAPR 성능 개선을 위한 새로운 신호 처리 기법)

  • Eom, Seung-Sik;Ko, Young-Chai
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.211-213
    • /
    • 2010
  • 본 논문에서는 직교 주파수 다중화 (OFDM) 신호의 새로운 peak to average power ratio (PAPR) 감쇄 기법을 제안한다. 제안 기법은 시간영역에서 OFDM 심볼의 동상 (in-phase) 성분 및 직교 (quadrature) 성분을 회전시키고 재조합한다. 제안 기법은 기존의 partial transmit sequence (PTS) 기법과 비교하여 계산량을 현저히 줄일 수 있는 장점이 있었음에도 모의 실험을 통해 얻어진 PAPR의 complementary cumulative distribution function (CCDF)는 PTS와 비교할 때 거의 같은 성능을 보였다. 더욱이 제안된 기법은 additive white Gaussian (AWGN) 채널 및 다중 경로 페이딩 채널 (multi-path fading channel)에서 일반적인 OFDM 신호를 전송할 때와 거의 같은 BER (bit error rate) 성능을 보였다.

  • PDF

A Parallel Combinatory OFDM System with Weighted Phase Subcarriers

  • Zheng, Hui;Shrestha, Robin;Hwang, Jae-Ho;Kim, Jae-Mong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.322-340
    • /
    • 2012
  • Orthogonal Frequency Division Multiplexing (OFDM) is usually regarded as a spectral efficient multicarrier modulation technique, yet it suffers from a high peak-to-average power ratio (PAPR) problem. Among all the existing PAPR reduction techniques in OFDM systems, side information based PAPR reduction techniques such as partial transmit sequence (PTS) and selective mapping (SLM) schemes, have attracted the most attention. However, the transmission of side information results in somewhat spectral loss and this does not significantly improve the bit error rate (BER) performance. Parallel combinatory (PC) OFDM yields higher spectral efficiency (SE) and better BER performance on Gaussian channels,while is a little but not obvious PAPR improvement over the ordinary OFDM system. This investigation aimed to design a 'perfect' OFDM system. We introduce the side information to rotate the subcarrier phases of our novel PC-OFDM system structure, and call this new system the SIPC(Side information based Parallel Combinatory)-OFDM system. The proposed system achieves better PAPR and SE performance. In addition, considering the tradeoff of system parameters, the proposed system also has the properties of a higher BER.

OFDM Communication System Using the Additive Control Tone for PAPR Reduction (PAPR 저감을 위하여 부가 Control 톤을 이용하는 OFDM 통신 시스템)

  • Kim Jin-Kwan;Lee Ill-Jin;Ryu Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.12 s.103
    • /
    • pp.1229-1238
    • /
    • 2005
  • OFDM(Orthogonal Frequency Division Multiplexing) communications system is very attractive for the high data rate wireless transmission. However, it may be distorted in the nonlinear HPA(High Power Amplifier) since OFDM signal has hish PAPR(Peak-to-Average Power Ratio). In this paper, a new method using control tone is studied for reducing the PAPR and we call it PCT(PAPR Control Tone) method. This proposed PCT method is to assign control tones for PAPR reduction at the predefined sub-carriers. After IFFT(Inverse Fast Fourier Transform) and PAPR calculation, the OFDM data signal of the lowest PAPR is selected to transmit. Unlike the conventional method, it can cut down the computational complexity because it does not require the transmission and demodulation process of side information about the phase rotation. Furthermore, if this method is made up in parallel configuration, it can solve the time delay problem so that it can be processed in real time processing. This proposed method is compared with the conventional selected mapping(SLM) technique. We find out the PAPR reduction performance and BER when the number of control tone is 6 and nonlinear HPA is considered.