• Title/Summary/Keyword: Partial slip

Search Result 103, Processing Time 0.024 seconds

Influence of Stick-Slip Behavior on the Friction Force under Fretting Conditions (프레팅 조건 하에서 스틱-슬립 현상이 마찰력에 미치는 영향)

  • Lee Young-Ze;Jeong Sung-Hoon;Yong Suk-Ju
    • Tribology and Lubricants
    • /
    • v.21 no.1
    • /
    • pp.16-20
    • /
    • 2005
  • Friction and wear characteristics between two steel surfaces under fretting condition are investigated experimentally. The fretting damage caused by low-amplitude oscillatory sliding can be classified into three regimes of gross-slip, mixed-slip and partial-slip due to stick-slip phenomenon. One of the most important characteristics of fretting wear is the transition from gross-slip to mixed-slip. This study was focused on getting the degree of stick-slip out of the friction transition under fretting condition. Fretting wear is divided into three conditions of gross-slip/mixed-slip/partial-slip. The criteria for the division are friction and displacement amplitude, wear scar morphology and dissipated energy. In this test, friction force and displacement were measured for detecting the transition from mixed-slip to gross-slip and qualitatively predicting the degree of the wear.

Contact Condition of Zircaloy-4 Tube and Support and Transition of Slip Regime (지르칼로이-4 튜브 및 지지부의 접촉조건과 미끄럼 상태의 천이)

  • 김형규;강흥석;윤경호;송기남
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.81-88
    • /
    • 2001
  • To study the influence of the shape of contacting bodies (especially the end profile) on slip regime, wear test is conducted in the case of the contact between tube and support. Two different end profiles of the support are used such as truncated wedge and rounded punch. During the test, 10, 30 and 50 N are applied as normal force and slip displacement varies between 10-200 $\mu\textrm{m}$. The tube and the support specimens are made of Zircaloy-4 and a specially designed wear tester is used. Tests are carried out in air at room temperature. Wear on the tube is examined by measuring microscope. Partial and gross slip regimes are classified from the observed wear shape. Surface roughness tester is also used to measure the wear depth and contour, from which wear volume is evaluated. The transition from partial to gross slip is also investigated by investigating the considerable increase of wear volume. From the result, the boundary between the partial and the gross slip is newly determined in the conventional fretting map for the present specific contact configuration. Since the transition is related with the amount of energy dissipation from the contact surface so is wear, it is regarded that wear can be restrained by designing a proper shape of support.

  • PDF

Fretting Wear Mechanisms of Zircaloy-4 and Inconel 600 Contact in Air

  • Kim, Tae-Hyung;Kim, Seock-Sam
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1274-1280
    • /
    • 2001
  • The fretting wear behavior of the contact between Zircaloy-4 tube and Inconel 600, which are used as the fuel rod cladding and grid, respectively, in PWR nuclear power plants was investigated in air. In the study, number of cycles, slip amplitude and normal load were selected as the main factors of fretting wear. The results indicated that wear increased with load, slip amplitude and number of cycles but was affected mainly by the slip amplitude. SEM micrographs revealed the characteristics of fretting wear features on the surface of the specimens such as stick, partial slip and gross slip which depended on the slip amplitude. It was found that fretting wear was caused by the crack generation along the stick-slip boundaries due to the accumulation of plastic flow at small slip amplitudes and by abrasive wear in the entire contact area at high slip amplitudes.

  • PDF

Flow Structure Prediction for a Square Harbour using Various Wall Boundary Conditions (다양한 벽 경계조건을 이용한 정사각형 항구의 흐름구조 예측)

  • Kang, Yun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.151-158
    • /
    • 1999
  • A model harbour with Plan scale of $1.08{\times}1.08m$ is built on a tidal tank using a Froude relationship from a real harbour($432{\times}432m$). Velocity components are measured by a ultrasonic velocity meter and flow structure is then predicted using a 2-D depth integrated hydrodynamic model. In the finite difference model implemented in this study, various wall boundary conditions, i.e. no-slip, free-slip, partial-slip and semi-slip are used to represent turbulent diffusion terms, e.g. ${\partial}^2U_{ij}/{\partial}x^2\;or\;{\partial}^2U_{ij}/{\partial}y^2$. These conditions are focused to investigate their influence on the flow structure along the wall and basin of the harbour with aspect ratio of unity, i.e. Length/Breadth. Numerical experiments are compared with the measurements and used to analyse flow patterns in the basin during tidal cycles. It is shown from the results that no-slip closed boundary condition is the most appropriate method with respect to the location of the eddy centre, although the condition underestimates velocity components along the wall.

  • PDF

Fretting Oamage Evaluation of Zircaloy-Inconel Contact (지르칼로이-인코넬 접촉에서의 프레팅 손상 평가)

  • 김태형;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.263-268
    • /
    • 2000
  • The fretting damage of the contact between Zircaloy-4 and Inconel 600 have Investigated. A fretting wear tester was designed to be suitable for this fretting test. In this study, the number of cycles, slip amplitude and normal load were selected as main factors of fretting wear. As the result of this research the wear volume increased with the increase of loads, slip amplitudes and the number of cycles and was more affected by slip amplitudes rather than by load. According to SEM, stick, partial slip, gross slip were observed on the surface of both specimens and wavy worn surfaces as the typical fretting damage were also Investigated due to accumulation of plastic flow.

  • PDF

Flow Characteristics According to Velocity Conditions of Cylinder Boundary Under Low Reynolds Number (저 레이놀즈 수에서 실린더 경계 유속조건에 따른 흐름 특성)

  • Song, Chang Geun;Seo, Il Won;Kim, Tae Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2267-2275
    • /
    • 2013
  • Existing conventional model for analysis of shallow water flow just assumed the internal boundary condition as free-slip, which resulted in the wrong prediction about the velocity, vorticity, water level, shear stress distribution, and time variation of drag and lift force around a structure. In this study, a finite element model that can predict flow characteristics around the structure accurately was developed and internal boundary conditions were generalized as partial slip condition using slip length concept. Laminar flow characteristics behind circular cylinder were analyzed by varying the internal boundary conditions. The simulation results of (1) time variations of longitudinal and transverse velocities, and vorticity; (2) wake length; (3) vortex shedding phenomena by slip length; (4) and mass conservation showed that the vortex shedding had never observed and laminar flow like creeping motion was occurred under free-slip condition. Assignment of partial slip condition changed the velocity distribution on the cylinder surface and influenced the magnitude of the shear stress and the occurrence of vorticity so that the period of vortex shedding was reduced compared with the case of no slip condition. The maximum mass conservation error occurred in the case of no slip condition, which had the value of 0.73%, and there was 0.21 % reduction in the maximum mass conservation error by changing the internal boundary condition from no slip to partial slip condition.

Transverse and longitudinal partial interaction in composite bolted side-plated reinforced-concrete beams

  • Oehlers, D.J.;Nguyen, N.T.;Ahmed, M.;Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.553-563
    • /
    • 1997
  • A procedure is being developed for bolting plates to the sides of existing reinforced concrete beams to strengthen and stiffen them. Unlike standard composite steel and concrete beams in which there is longitudinal-partial-interaction at the steel/concrete interface (that is slip along the length of the beam), composite bolted side-plated reinforced-concrete beams are unique in that they also exhibit transverse-partial-interaction, that is slip transverse to the length of the beam. In this work, the fundamental mathematical models for transverse-partial-interaction and its interaction with longitudinal-partial-interaction are developed. The fundamental models are then further developed to determine the number of connectors required to resist the transverse forces and to limit the degree of transverse-partial-interaction in bolted side-plated reinforced concrete beams.

Method of Friction Energy Dissipation and Crack Analysis under Partial Slip (부분 미끄럼 상태에서의 마찰에너지 방출 및 균열해석 방법)

  • 김형규
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.38-46
    • /
    • 1999
  • Numerical methods are procured for evaluating the contact stresses, the dissipation of friction energy density and the fatigue cracking emanated from the contact surface under the partial slip condition. A rounded punch is used for the indenter pressing and slipping on the elastic half plane. Plane strain condition is assumed for the present analysis. Several sample calculations are carried out to investigate the effect of the punch roundness, the shear load path, and the crack obliquity and closure on the failure. It is found that the present methods can be a useful tool for studying the physical failure of the of the contacting materials such as fretting wear and fretting fatigue cracking.

  • PDF

The Influence of Contact Shape on the Slip Regime in Contact-induced Failure

  • Kim, Hyung-Kyu;Kang, Heung-Seok;Song, Kee-Nam
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.85-92
    • /
    • 2001
  • The variation of contact traction induced by different contact shapes is studied experimentally and theoretically. Considerations fer the contact shape are rounded, truncated and truncated with rounding punches. A fretting wear experiment is conducted with the contact configuration of the strip on the tube specimens. The strip specimen is pressed to form the end profile of a rounded and truncated with rounding punches shape. Wear on the tube is investigated, which is regarded as the slip region of the contact surface. Taken into consideration is the general solution of the normal traction in the case of the indentation by a punch with its end profile of the combination of parabolas. Then, partial slip solution is obtained numerically, which is compared with the wear on the tube. The radius of the rounding and the obliquity of the edge truncation affect the tractions considerably. It is found that the proper choice of the end profile can restrain the contact-induced failure such aswear.

  • PDF

Basal slip (0001)1/3<1120> dislocation in sapphire ($\alpha$-Al$_2$O$_3$) single crystals Part I : recombination motion (사파이어($\alpha$-Al$_2$O$_3$) 단결정에 있어 basal slip (0001)1/3<1120>전위 Part I : 재결합거동)

  • Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.278-282
    • /
    • 2001
  • The recombination motion of Partial dislocations on basal slip (0001) 1/3<1120> in sapphire ($\alpha$-Al$_2$$O_3$) single crystals was investigated using the four-point bending test with the prism plane (1120) samples. These bending experiments were carried but in the temperature range from $1200^{\circ}C$ to $1400^{\circ}C$ at various engineering stresses 90MPa, 120MPa, and 150MPa. During these tests it was shown that an incubation time was needed for basal slip to be activated. The activation energy for the incubation time was 5.6-6.0eV in the temperature range from $1200^{\circ}C$ to $1400^{\circ}C$. The incubation time is believed to be related to recombination of climb dissociated partial dislocations via self-climb. In addition, these activation energies are nearly same as those for oxygen self-diffusion in $Al_2$$O_3$ (approximately 6.3 eV). Thus, the recombination of the two partial dislocations would be possibly controlled by oxygen diffusion on the stacking fault between the partials.

  • PDF