• Title/Summary/Keyword: Partial least square regression

Search Result 120, Processing Time 0.031 seconds

Analysis of Partial Least Square Regression on Textural Data from Back Extrusion Test for Commercial Instant Noodles (시중 즉석 조리 면의 Back Extrusion 텍스처 데이터에 대한 Partial Least Square Regression 분석)

  • Kim, Su kyoung;Lee, Seung Ju
    • Food Engineering Progress
    • /
    • v.14 no.1
    • /
    • pp.75-79
    • /
    • 2010
  • Partial least square regression (PLSR) was executed on curve data of force-deformation from back extrusion test and sensory data for commercial instant noodles. Sensory attributes considered were hardness (A), springiness (B), roughness (C), adhesiveness to teeth (D), and thickness (E). Eight and two kinds of fried and non-fried instant noodles respectively were used in the tests. Changes in weighted regression coefficients were characterized as three stages: compaction, yielding, and extrusion. Correlation coefficients appeared in the order of E>D>A>B>C, root mean square error of prediction D>C>E>B>A, and relative ability of prediction D>C>E>B>A. Overall, 'D' was the best in the correlation and prediction. 'A' with poor prediction ability but high correlation was considered good when determining the order of magnitude.

A Development of Statistical Model for Pavement Response Model (도로포장 반응모형에 대한 통계모형 개발)

  • Lee, Moon Sup;Park, Hee Mun;Kim, Boo Il;Heo, Tae-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.5
    • /
    • pp.89-96
    • /
    • 2012
  • The Falling Weight Deflectormeter has been widely used in evaluating the structural adequacy of pavement structures. The deflections measured from the FWD are capable of estimating the stiffness of pavement layers and measuring the pavement responses in the pavement structure. The objective of paper is to develop the pavement response model using a partial least square regression technique based on the FWD deflection data. The partial least square regression method enables to solve the multicollinearity problem occurred in multiple regression model. It is also found that the pavement response model can be developed using the raw data when a partial least square regression was used.

A modified partial least squares regression for the analysis of gene expression data with survival information

  • Lee, So-Yoon;Huh, Myung-Hoe;Park, Mira
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.5
    • /
    • pp.1151-1160
    • /
    • 2014
  • In DNA microarray studies, the number of genes far exceeds the number of samples and the gene expression measures are highly correlated. Partial least squares regression (PLSR) is one of the popular methods for dimensional reduction and known to be useful for the classifications of microarray data by several studies. In this study, we suggest a modified version of the partial least squares regression to analyze gene expression data with survival information. The method is designed as a new gene selection method using PLSR with an iterative procedure of imputing censored survival time. Mean square error of prediction criterion is used to determine the dimension of the model. To visualize the data, plot for variables superimposed with samples are used. The method is applied to two microarray data sets, both containing survival time. The results show that the proposed method works well for interpreting gene expression microarray data.

Modeling and Comparison for Auto-association using Support Vector Regression (SVR) and Partial Least Square Regression (PLSR) in Online Monitoring Techniques (상시감시기술에서 SVR과 PLSR을 이용한 Auto-association 모델링 및 성능비교)

  • Kim, Seong-Jun;Seo, In-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.483-488
    • /
    • 2010
  • An online monitoring based upon sensor system is essential to assure both efficient operation and safety in the power plant. Of great importance is modeling for auto-association (AA) in online monitoring technique. The objective of auto-associative models lies in predicting true values of plant operation parameters from sensor signals transmitted. This paper presents two AA models using Support Vector Regression (SVR) and Partial Least Square Regression (PLSR). The presented models are useful, in particular, when there are many parameters to monitor in the power plant. Illustrative examples are given by using a real-world plant dataset. AA performances of SVR and PLSR are finally summarized in terms of accuracy and sensitivity. According to our results, SVR shows much higher accuracy and, however, its sensitivity is relatively degraded.

AI Technology Analysis using Partial Least Square Regression

  • Choi, JunHyeog;Jun, Sunghae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.109-115
    • /
    • 2020
  • In this paper, we propose an artificial intelligence(AI) technology analysis using partial least square(PLS) regression model. AI technology is now affecting most areas of our society. So, it is necessary to understand this technology. To analyze the AI technology, we collect the patent documents related to AI from the patent databases in the world. We extract AI technology keywords from the patent documents by text mining techniques. In addition, we analyze the AI keyword data by PLS regression model. This regression model is based on the technique of partial least squares used in the advanced analyses such as bioinformatics, social science, and engineering. To show the performance of our proposed method, we make experiments using AI patent documents, and we illustrate how our research can be applied to real problems. This paper is applicable not only to AI technology but also to other technological fields. This also contributes to understanding other various technologies by PLS regression analysis.

A Method for Screening Product Design Variables for Building A Usability Model : Genetic Algorithm Approach (사용편의성 모델수립을 위한 제품 설계 변수의 선별방법 : 유전자 알고리즘 접근방법)

  • Yang, Hui-Cheol;Han, Seong-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.45-62
    • /
    • 2001
  • This study suggests a genetic algorithm-based partial least squares (GA-based PLS) method to select the design variables for building a usability model. The GA-based PLS uses a genetic algorithm to minimize the root-mean-squared error of a partial least square regression model. A multiple linear regression method is applied to build a usability model that contains the variables seleded by the GA-based PLS. The performance of the usability model turned out to be generally better than that of the previous usability models using other variable selection methods such as expert rating, principal component analysis, cluster analysis, and partial least squares. Furthermore, the model performance was drastically improved by supplementing the category type variables selected by the GA-based PLS in the usability model. It is recommended that the GA-based PLS be applied to the variable selection for developing a usability model.

  • PDF

Estimation of carcass weight of Hanwoo (Korean native cattle) as a function of body measurements using statistical models and a neural network

  • Lee, Dae-Hyun;Lee, Seung-Hyun;Cho, Byoung-Kwan;Wakholi, Collins;Seo, Young-Wook;Cho, Soo-Hyun;Kang, Tae-Hwan;Lee, Wang-Hee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.10
    • /
    • pp.1633-1641
    • /
    • 2020
  • Objective: The objective of this study was to develop a model for estimating the carcass weight of Hanwoo cattle as a function of body measurements using three different modeling approaches: i) multiple regression analysis, ii) partial least square regression analysis, and iii) a neural network. Methods: Data from a total of 134 Hanwoo cattle were obtained from the National Institute of Animal Science in South Korea. Among the 372 variables in the raw data, 20 variables related to carcass weight and body measurements were extracted to use in multiple regression, partial least square regression, and an artificial neural network to estimate the cold carcass weight of Hanwoo cattle by any of seven body measurements significantly related to carcass weight or by all 19 body measurement variables. For developing and training the model, 100 data points were used, whereas the 34 remaining data points were used to test the model estimation. Results: The R2 values from testing the developed models by multiple regression, partial least square regression, and an artificial neural network with seven significant variables were 0.91, 0.91, and 0.92, respectively, whereas all the methods exhibited similar R2 values of approximately 0.93 with all 19 body measurement variables. In addition, relative errors were within 4%, suggesting that the developed model was reliable in estimating Hanwoo cattle carcass weight. The neural network exhibited the highest accuracy. Conclusion: The developed model was applicable for estimating Hanwoo cattle carcass weight using body measurements. Because the procedure and required variables could differ according to the type of model, it was necessary to select the best model suitable for the system with which to calculate the model.

MOISTURE CONTENT MEASUREMENT OF POWDERED FOOD USING RF IMPEDANCE SPECTROSCOPIC METHOD

  • Kim, K. B.;Lee, J. W.;S. H. Noh;Lee, S. S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.188-195
    • /
    • 2000
  • This study was conducted to measure the moisture content of powdered food using RF impedance spectroscopic method. In frequency range of 1.0 to 30㎒, the impedance such as reactance and resistance of parallel plate type sample holder filled with wheat flour and red-pepper powder of which moisture content range were 5.93∼-17.07%w.b. and 10.87 ∼ 27.36%w.b., respectively, was characterized using by Q-meter (HP4342). The reactance was a better parameter than the resistance in estimating the moisture density defined as product of moisture content and bulk density which was used to eliminate the effect of bulk density on RF spectral data in this study. Multivariate data analyses such as principal component regression, partial least square regression and multiple linear regression were performed to develop one calibration model having moisture density and reactance spectral data as parameters for determination of moisture content of both wheat flour and red-pepper powder. The best regression model was one by the multiple linear regression model. Its performance for unknown data of powdered food was showed that the bias, standard error of prediction and determination coefficient are 0.179% moisture content, 1.679% moisture content and 0.8849, respectively.

  • PDF

Anthocyanins in 'Cabernet Gernischet' (Vitis vinifera L. cv.) Aged Red Wine and Their Color in Aqueous Solution Analyzed by Partial Least Square Regression

  • Han, Fu-Liang;Jiang, Shou-Mei;He, Jian-Jun;Pan, Qiu-Hong;Duan, Chang-Qing;Zhang, Ming-Xia
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.724-731
    • /
    • 2009
  • Anthocyanins are considered one of the main color determinants in aged red wine. The anthocyanins in aged red wine made from 'Cabernet Gernischet' (Vitis vinifera L. cv.) grape were investigated by high performance liquid chromatography- electronic spray ionization- mass spectrometry (HPLC-ESI-MS) and their color presented in aqueous solution were evaluated using partial least square regression (PLS). The results showed that there were 37 anthocyanins identified in this wine, including 22 pyranoanthocyanins. The analysis of PLS indicated that different anthocyanins showed distinct color values: malvidin 3-O-(6-O-acetyl)-glucoside-4-vinylguaiacol (Mv3-acet-glu-vg) presented the highest color values, while malvidin 3-O-glucoside (Mv3-glu) showed least. Among the free non-acylated anthocyanins, peonidin 3-O-oglucoside (Pn3-glu) showed the highest color values; the coumarylated anthocyanins presented higher color values than their corresponding acetylated anthocyanins and parent anthocyanins; pyranoanthocyanins presented also higher color values than their original anthocyanins; the color of anthocyanins depended on their structure. This work will be helpful to reveal evolution in aged red wine.

Determination of Urban-Life Housing Price and Return Ratio by Location (도시형생활주택의 입지별 분양가격 및 수익률 결정요인)

  • Park, Jin-A;Woo, Chul-Min;Baik, Min-Seok;Shim, Gyo-Eon
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.11
    • /
    • pp.469-481
    • /
    • 2012
  • The demand for small-sized housing has been increasing due to the recession of real-estate price and the increase of small-sized households. Especially, the demand for affordable housing has been increasing since the style of housing and the location fits the lifestyle of small-sized household. In addition, many investors have been buying it because it has advertised as an investment property holding high-return ratio. However, an empirical analysis about the selling price and the return ratio has not been done yet. Therefore, the purpose of the research is having the empirical analysis based on the selling price and return ration by examining the affordable housing in Seoul. The urban-life housing more than 50 generations of the Seoul was irradiated for the analysis. And the linear regression analysis and PLS(Partial Least Square Regression) analysis was used for the empirical analysis. The result of analysis, based on the linear regression analysis, showed that factors including neighboring housing price and subway catchment area have a significant effect to the determinant factors of housing price. The analysis for return ratio showed neighboring housing price, subway catchment area and amenities affects the ratio. Especially, the fault of using small sample was covered by using the partial least square regression in this research.