• Title/Summary/Keyword: Partial control

Search Result 1,588, Processing Time 0.027 seconds

A Study on the Dynamic Voltage Stability Considering the Power System Security Control (계통(系統)의 안전성(安全性) 제어(制御)를 고려(考慮)한 동적(動的) 전압안정도(電壓安定度)에 관(關)한 연구(硏究))

  • Lee, Geun-Joon;Hwang, Jong-Young;Lee, Gil-Soon;Jeong, Tay-Ho;Kim, Keon-Jung;Kim, Yong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.54-60
    • /
    • 1994
  • The cause of black out of Tokyo Power in 1987 has been identified as the voltage stability problem. After this event many researchers has been interested in voltage stability or voltage collapse phenomena. The voltage instability is different Com the transient stability in the sense of reactive power mismatch and the long duration time. In this study, we developed efficient tool for analyze and control the dynamic voltage instability. To analize specific condition of dynamic voltage stability, quasi-dynamic simulation method is developed. To provide proper mathmatical model for dynamic voltage stability, generator, SVC, OLTC, induction motor models are introducted. To provide specified dynamic voltage stability, the authors considered to use reactive loss function(${\partial}Q/{\partial}p_L$) as reactive power facility control index. This program was tested and identified its usefulness in real KEPCO system.

  • PDF

Boundary Control of Container Crane;Two-Stage Control of a Container Crane as Nonflexible and Flexible Cable

  • Park, Hahn;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.153-158
    • /
    • 2004
  • In this paper, we proposed a two-stage control of the container crane. The first stage control is time-optimal control for the purpose of fast trolley traveling. With suitable trolley velocity patterns, the sway which is generated during trolley moving is minimized. At the second stage control feedback control law is investigated for the quick suppression of residual vibration after the trolley motion. For more practical system, the container crane system is modeled as a partial differential equation (PDE) system with flexible cable. The dynamics of the cable is derived as a moving system with tension caused by payload using Hamilton's principle for the systems. A control law based upon the Lyapunov's method is derived. It is revealed that a time-varying control force and a suitable passive damping at the actuator can successfully suppress the transverse vibrations.

  • PDF

An Empirical Model for Decoupling Control of a Variable Speed Refrigeration System (가변속 냉동시스템의 비간섭제어를 위한 실험적 모델)

  • Hua, Li;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.81-87
    • /
    • 2006
  • This paper deals with an empirical model for decoupling control to control the refrigeration system effectively. The conventional control schemes of the system are mainly focused on representative two control methods, superheat control and capacity control. The capacity control is basically conducted to respond partial loading conditions on the purpose of energy saving. The superheat control is mainly carried out to maintain maximum coefficient of performance (COP). In the variable speed refrigeration system, the capacity and the superheat are controlled by inverters and electronic expansion valves respectively for saving energy and improving cost performance. The capacity and superheat can not be controlled independently because of interfering loop when the compressor speed and opening angle electronic expansion valve is varied. Therefore, we suggest decoupling model to eliminate the interfering loop at first. Next, each transfer function in decoupling control model is obtained from number of experiments.

  • PDF

AC-DC Converter Control for Power Factor Correction of Inverter Air Conditioner System (인버터 에어컨 시스템의 역률보상을 위한 AC-DC 컨버터 제어)

  • Park, Gwi-Geun;Choi, Jae-Weon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.154-162
    • /
    • 2007
  • In this paper, we propose a new AC-DC converter control method to comply with harmonics regulation(IEC 61000-3) effective for the inverter system of an air conditioner whose power consumption is less than 2,500W. There are many different ways of AC-DC converter control, but this paper focuses on the converter control method that is adopting an input reactor with low cost silicon steel core to strengthen cost competitiveness of the manufacturer. The proposed control method controls input current every half cycle of the line frequency to get unit power factor and at the same time to reduce switching loss of devices and acoustic noise from reactor. This kind of converter is known as a Partial Switching Converter(PSC). In this study, theoretical analysis of the PSC has been performed using Matlab/Simulink while a 16-bit micro-processor based converter has been used to perform the experimental analysis. In the theoretical analysis, electrical circuit models and equations of the PSC are derived and simulated. In the experiments, micro-processor controls input current to keep the power factor above 0.95 by reducing the phase difference between input voltage and current and at the same time to maintain a reference DC-link voltage against voltage drop which depends on DC-link load. Therefore it becomes possible to comply with harmonic regulations while the power factor is maximized by optimizing the time of current flow through the input reactor for every half cycle of line frequency.

A Study on Reactive Congestion Control with Loss Priorities in ATM Network (ATM 네트워크에서 우선권을 갖는 반응 혼잡 제어에 관한 연구)

  • Park, Dong-Jun;Kim, Hyeong-Ji
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.4
    • /
    • pp.697-708
    • /
    • 1996
  • In this paper, we study reactive congestion control with priority in ATM network. The priority schemes for buffer access, partial buffer sharing have been investigated in order to improve the utilization of ATM network resources the network and to satisfy the most demanding traffic class. We consider in this paper a discrete-time queueing model for partial buffer sharing with two Markov modulated Poisson inputs. This model can be used to analyze the the effects of the partial buffer sharing priority scheme on system performance for realistic cases of bursty services. Explicit formulae are derived for the number of cells in the system and the loss probabilities for the traffic. Congestion may still occur because of unpredictable statistical fluctuation of traffic sources even when preventive control is performed in the network. In this Paper, we study reactive congestion control, in which each source changes its cell emitting rate a daptively to the traffic load at the switching node. Our intention is that,by incorporating such a congcstion control method in ATM network,more efficient congsestion control is established. We develope an analytical model,and carry out an approximateanalysis of reactive congestion con-trol with priority.Numerical results show that several orders of magnitude improvement in the loss probability can be achieved for the high priority class with little impact on the low priority class performance.And the results show that the reactive congestion control with priority are very effective in avoiding congestion and in achieving the statistical gain.

  • PDF

Container Crane Control: Modified Time-Optimal Traveling Followed by Nonlinear Residual Sway Control (컨테이너 기중기의 제어 : 수정된 시간최적주행과 비선형 잔류흔들림 제어)

  • Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.630-639
    • /
    • 1999
  • To achieve fast loading and unloading of containers from a container ship, quick suppression of the remaining sway motion of the container at the end of each trolley stroke is crucial. Due to the pendulum motion of the container and disturbances like sind, residual sway always exists at the end of trolley movement. In this paper, the sway-control problem of a container crane is investigated. A two-stage control is proposed. The first stage is a time optimal controlfor the purpose of fast trolley traveling. The second stage is a nonlinear control for the quick suppression of residual sway, which starts right after the first stage while lowering the container. The nonlinear control is investigated in the perspective of controlling an underatuated mechanical system, which combines partial feedback linearization to account for the known nonlinearities as much as possible, and variable structure control to account for the unmodeled dynamics and disturbances. Simulation and experimental results are provided.

  • PDF

A Study on PFC Buck-Boost AC-DC Converter of Soft Switching (소프트 스위칭형 PFC 벅-부스트 AC-DC 컨버터에 관한 연구)

  • Kwak, Dong-Kurl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.465-471
    • /
    • 2007
  • The system efficiency of the proposed Buck-Boost AC-DC converter is increased by soft switching method. The converter includes to merit of power factor correction (PFC) from sinusoidal control of input current. The switching behavior of control switches operates with soft switching by partial resonance, and then the proposed converter has high system efficiency with decrement of switching power loss. The input current waveform in proposed converter is got to be a sinusoidal form of discontinuous quasi-pulse row in proportion to magnitude of AC input voltage under the constant duty cycle switching. Therefore, the input power factor is nearly unity. The output voltage of the converter is regulated by PWM control technique. The discontinuous mode action of current flowing into inductor makes to simplify control method and control components. The proposed PFC Buck-Boost converter is analyzed to compare with the conventional PFC Buck-Boost converter. Some computer simulative results and experimental results confirm to the validity of the analytical results.

Concurrency Control and Recovery Methods for Multi-Dimensional Index Structures (다차원 색인구조를 위한 동시성제어 기법 및 회복기법)

  • Song, Seok-Il;Yoo, Jae-Soo
    • The KIPS Transactions:PartD
    • /
    • v.10D no.2
    • /
    • pp.195-210
    • /
    • 2003
  • In this paper, we propose an enhanced concurrency control algorithm that maximizes the concurrency of multi-dimensional index structures. The factors that deteriorate the concurrency of index structures are node splits and minimum bounding region (MBR) updates in multi-dimensional index structures. The proposed concurrency control algorithm introduces PLC(Partial Lock Coupling) technique to avoid lock coupling during MBR updates. Also, a new MBR update method that allows searchers to access nodes where MBR updates are being performed is proposed. To reduce the performance degradation by node splits the proposed algorithm holds exclusive latches not during whole split time but only during physical node split time that occupies the small part of a whole split process. For performance evaluation, we implement the proposed concurrency control algorithm and one of the existing link technique-based algorithms on MIDAS-3 that is a storage system of a BADA-4 DBMS. We show through various experiments that our proposed algorithm outperforms the existing algorithm in terms of throughput and response time. Also, we propose a recovery protocol for our proposed concurrency control algorithm. The recovery protocol is designed to assure high concurrency and fast recovery.

Testing of the Theory of Planned Behavior in the Prediction of Smoking Cessation Intention and Smoking Cessation Behavior among Adolescent Smokers (청소년 흡연자의 금연의도 및 금연행위 예측을 위한 계획적 행위이론(Theory of Planned Behavior)의 검증)

  • Song, Mi-Ra;Kim, Soon-Lae
    • Research in Community and Public Health Nursing
    • /
    • v.13 no.3
    • /
    • pp.456-470
    • /
    • 2002
  • Objectives: The purpose of this study was to test the Theory of Planned Behavior (TPB) in the prediction of smoking cessation intention and smoking cessation behavior among adolescent smokers, in order to provide basic data to develop a future smoking cessation program as a nursing intervention. Method: The study subjects were 80 adolescent smokers who had smoked one cigarette and attended a five-day school smoking cessation program. The data were collected from October 24 to December 21, 1999. The instruments used in this study were the tools developed by Jee (1994) to measure TPB variables such as attitude toward smoking cessation behavior, subjective norm, perceived behavioral control, smoking cessation intention, and smoking cessation behavior. The data were analyzed with the SAS/PC program using descriptive statistics, hierarchical multiple regression, and logistic multiple regression. Results: 1. Attitude toward smoking cessation behavior, subjective norm, and perceived behavioral control were partially significant in predicting smoking cessation intention. 2. Smoking cessation intention and perceived behavioral control toward smoking cessation behavior did not significantly predict smoking cessation behavior. 3. There were partial interaction effects among the attitude toward smoking cessation behavior, subjective norm, and perceived behavioral control in the prediction of smoking cessation intention. 4. There were partial interaction effects between smoking cessation intention and perceiver behavioral control toward smoking cessation behavior in the prediction of smoking cessation behavior. Conclusion: This study partially demonstrated support for the TPB model that was partially useful in predicting smoking cessation intention and smoking cessation behavior among adolescent smokers. Therefore, it is recommended that attitude toward smoking cessation behavior and perceived behavioral control should be considered in developing smoking cessation programs and implementing nursing interventions to change the smoking behavior of adolescent smokers.

  • PDF

Sway Control of Container Cranes as an Axially Moving Nonlinear String

  • Park, Hahn;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2474-2479
    • /
    • 2005
  • The control objectives in this paper are to move the gantry of a container crane to its target position and to suppress the transverse vibration of the payload. The crane system is modeled as an axially moving nonlinear string equation, in which control inputs are applied at both ends, through the gantry and the payload. The dynamics of the moving string are derived using Hamilton's principle. The Lyapunov function method is used in deriving a boundary control law, in which the Lyapunov function candidate is introduced from the total mechanical energy of the system. The performance of the proposed control law is compared with other two control algorithms available in the literature. Experimental results are given.

  • PDF