• Title/Summary/Keyword: Partial admission turbine

Search Result 66, Processing Time 0.026 seconds

터보펌프 부분흡입형 터빈 공력설계

  • Lee, Eun-Seok;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.35-44
    • /
    • 2004
  • In this study, one dimensional aerodynamic and structural study of a partial admission turbo pump turbine was performed. A turbine consists of a nozzle, rotor, outlet guide vanes. The aerodynamic characteristics of each component was derived from the governing equation and validated from the CFD calculations. One-dimensional basic design such as velocity triangles was conducted from the mean line analysis and modified from the 2-D and 3-D CFD analysis. The blade profile was determined by the CFD optimization. The thermal stress analysis and structural analysis are needed to be studied in the next design stage.

  • PDF

Numerical Flow Analysis of a Supersonic Impulse Turbine with Nozzles and Rotor blades (노즐과 로터가 장착된 초음속 충동형 터빈의 전산유동해석)

  • Park, Pyun Goo;Lee, En Seok;Jeong, Eun Hwan;Kim, Jinhan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.445-451
    • /
    • 2004
  • Four design candidates for a 1.4MW class partial admission turbine have been chosen from a Preliminary design process. Their performance were estimated through the 3-D numerical analyses using a frozen rotor method. In order to select the optimum design, each flow analysis result was compared with others. Flow characteristics in the passages and some types of losses induced by shocks and wakes were found from calculation results. Based on these calculations, a new rotor blade was redesigned and compared with previous one through flow analysis.

  • PDF

A Numerical Analysis of the Partial Admission Supersonic Turbine Losses for Geometic Conditions (형상 변수에 따른 부분 흡입형 초음속 터빈 손실에 관한 수치적 연구)

  • Shin Bong-Gun;Im Kang-Soo;Kim Kui-Soon;Jeong Eun-Hwan;Park Pyun-Goo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.297-305
    • /
    • 2006
  • In this paper, numerical analyses of the flow within turbine for geometric conditions such as nozzle shape, length of axial clearance, and chamfer angle of leading edge of blade have been performed to investigate the partial admission supersonic turbine losses. Firstly, flow's bending occurred at axial clearance is depended on nozzle shape. Next, the chamfer angle of leading edge affects the strength of shock generated at the leading edge. Finally the expansion and mixsing of the flow within axial clearance are largely depended upon the length of axial clearance. Therefore it is found that aerodynamic losses of turbine is affected by nozzle shape and chamfer angel and that partial admission losses is depended on nozzle shape and the length of axial clearance.

  • PDF

Cycle Analysis and Experiment for a Small-Scale Organic Rankine Cycle Using a Partially Admitted Axial Turbine (부분분사 축류형 터빈을 이용한 소규모 유기랭킨 사이클의 실험 및 예측에 관한 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.33-41
    • /
    • 2015
  • Organic Rankine cycle (ORC) has been used to generate electrical or mechanical power from low-grade thermal energy. Usually, this thermal energy is not supplied continuously at the constant thermal energy level. In order to optimally utilize fluctuating thermal energy, an axial-type turbine was applied to the expander of ORC and two supersonic nozzle were used to control the mass flow rate. Experiment was conducted with various turbine inlet temperatures (TIT) with the partial admission rate of 16.7 %. The tip diameter of rotor was to be 80 mm. In the cycle analysis, the output power of ORC was predicted with considering the load dissipating the output power produced from the ORC as well as the turbine efficiency. The predicted results showed the same trend as the experimental results, and the experimental results showed that the system efficiency of 2 % was obtained at the TIT of $100^{\circ}C$.

Numerical Study on Steady and Unsteady Flow Characteristics of Nozzle-Rotor Flow in a Partial Admission Supersonic Axial Turbine with Sweep Angle (스윕 각이 적용된 부분 흡입형 초음속 축류 터빈의 정상, 비정상 공력 특성에 관한 수치적 연구)

  • Jeong, Soo-In;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.173-179
    • /
    • 2012
  • Steady and unsteady three-dimensional RANS simulations have been performed on partial admission supersonic axial turbine having backward/forward sweep angles(${\pm}15^{\circ}$) and the results are compared with each other. The objective of this paper is to study the effect of unsteadiness on turbine flow characteristics and performances. The all results indicated that the losses of unsteady simulations were greater than those of steady cases. It was also shown that BSW model give the effect on the reducing of mass flow rates of tip leakage. In unsteady simulation, the increase of t-to-s efficiency at Rotor Out plane was observed more clearly.

  • PDF

A Study on the Nozzle-Rotor Interactions of Partial Admission Supersonic Turbines (부분입사형 초음속 터빈의 노즐과 익렬의 상호작용에 관한 연구)

  • Seong Young-Sik;Han Seong-Hoon;Kim Kui-Soon;Park Chang-Kyoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.53-60
    • /
    • 2004
  • In order to investigate the nozzle - rotor interactions and the effect of partial admission, the flows in supersonic turbine rotor cascades with a nozzle have been computed. Extensive computations of partial admission supersonic turbines provide the shock structures and flow patterns in the nozzle and rotor. The governing equations were discretized with Euler implicit method in time and 2nd-order upwind scheme of FVM in space. The $\kappa$-$\varepsilon$ turbulence model was utilized to describe the turbulent flow field. It is clearly shown that the nozzle flow is highly affected by the shocks or expansion waves propagated from the rotor leading edge. And the rotor flow is also affected by the shocks or wakes originated from the nozzle.

A Numerical Study on the Performance Characteristics of a Partial Admission Axial Supersonic Turbine with Swept Rotor Blades (로터 블레이드 스윕을 적용한 부분흡입형 축류 초음속 터빈의 성능특성에 대한 수치적 연구)

  • Jeong, Sooin;Kim, Kuisoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • In this study, we performed three-dimensional CFD analysis to investigate the effect of the rotor blade sweep of a partial admission supersonic turbine on the stage performance and the flow field. The computations are conducted for three different sweep cases, No sweep(NSW), Backward sweep(BSW), and Forward sweep(FSW), using flow analysis program, FLUENT 6.3 Parallel. The results of the BSW model show reduced mass flow rates of tip leakage and increased total-to-static efficiency. The strength of leading edge bow shock was decreased a little with BSW model. And the BSW model also shows a good performance around the hub region compared to other models.

Performance Prediction on a Partially Admitted Single-Stage Axial-Type Turbine (부분분사에 의하여 작동하는 축류형터빈의 성능예측에 관한 연구)

  • Cho Chong-Hyun;Cho Soo-Yong;Kim Soo-Yong;Choi Sang-Kyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.10-17
    • /
    • 2005
  • A performance prediction model is developed for partially admitted axial-type turbines. Losses generated within the turbine are classified to the windage loss, expansion loss and mixing loss. The developed loss model is compared with an experimental result. The results predicted with the developed model agree well with the experimental results than those predicted with several other models because this model considers three different kinds of losses. Moreover, this model predicts well the performance even the partial admission is changed. So, this model could be applied to predict the performance of partially admitted axial turbine and it has a high accurate performance.

터보펌프용 1.4MW급 터빈의 전산유동해석

  • Park, Pyun-Goo;Jeong, Eun-Hwan;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.153-162
    • /
    • 2005
  • Through a preliminary design process, four design candidates for a 1.4MW class partial admission turbine have been chosen and the numerical analyses using a frozen rotor method are applied to estimate their performance. Each flow analysis result was compared with others and the optimum design was selected. Flow characteristics in the passages and some types of losses induced by shocks and wakes were found from calculation results. A new rotor blade was redesigned based on these calculations and this result is compared with previous one through flow analysis.

  • PDF

A Study of the Design Technology for Developing a 100kW Class Steam Turbine (100 kW급 증기터빈 설계기술 개발에 관한 연구)

  • Kim, Young-Cheol;Ahn, Kook-Young;Cho, Chong-Hyun;Cho, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.3
    • /
    • pp.44-52
    • /
    • 2009
  • Small scale steam turbines are used as mechanical drivers in chemical process plant or power generators. In this study, a design technology was developed for a 100kW class steam turbine which will be used for removing $CO_2$ from the emission gas on a reheated cycle system. This turbine is operated at a low inlet total pressure of $5\;kgf/cm^2$. It consists of two stages and operates at the partial admission. For the meanline analysis, a performance prediction method was developed and it was validated through the performances on the operating small steam turbines which are using at plants. Their results showed that the output power was predicted within 10% deviation although the steam turbines adopted in this analysis were operated at different flow conditions and rotor size. The turbine blades was initially designed based on the computed results obtained from the meanline analysis. A supersonic nozzle was designed on the basis of the operating conditions of the turbine, and the first stage rotor was designed using a supersonic blade design method. The stator and second stage rotor was designed using design parameters for the blade profile. Finally, Those blades were iteratively modified from the flow structures obtained from the three-dimensional flow analysis to increase the turbine performance. The turbine rotor system was designed so that it could stably operate by 76% separation margin with tilting pad bearings.