• Title/Summary/Keyword: Partial Least Square Method

Search Result 208, Processing Time 0.029 seconds

Non-linear PLS based on non-linear principal component analysis and neural network (비선형 주성분해석과 신경망에 기반한 비선형 PLS)

  • 손정현;정신호;송상옥;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.394-394
    • /
    • 2000
  • This Paper proposes a new nonlinear partial least square method that extends the linear PLS. Proposed nonlinear PLS uses self-organizing feature map as PLS outer relation and multilayer neural network as PLS inner regression method.

  • PDF

Development of a meshless finite mixture (MFM) method

  • Cheng, J.Q.;Lee, H.P.;Li, Hua
    • Structural Engineering and Mechanics
    • /
    • v.17 no.5
    • /
    • pp.671-690
    • /
    • 2004
  • A meshless method with novel variation of point collocation by finite mixture approximation is developed in this paper, termed the meshless finite mixture (MFM) method. It is based on the finite mixture theorem and consists of two or more existing meshless techniques for exploitation of their respective merits for the numerical solution of partial differential boundary value (PDBV) problems. In this representation, the classical reproducing kernel particle and differential quadrature techniques are mixed in a point collocation framework. The least-square method is used to optimize the value of the weight coefficient to construct the final finite mixture approximation with higher accuracy and numerical stability. In order to validate the developed MFM method, several one- and two-dimensional PDBV problems are studied with different mixed boundary conditions. From the numerical results, it is observed that the optimized MFM weight coefficient can improve significantly the numerical stability and accuracy of the newly developed MFM method for the various PDBV problems.

Determination of Ethanol in Blood Samples Using Partial Least Square Regression Applied to Surface Enhanced Raman Spectroscopy

  • Acikgoz, Gunes;Hamamci, Berna;Yildiz, Abdulkadir
    • Toxicological Research
    • /
    • v.34 no.2
    • /
    • pp.127-132
    • /
    • 2018
  • Alcohol consumption triggers toxic effect to organs and tissues in the human body. The risks are essentially thought to be related to ethanol content in alcoholic beverages. The identification of ethanol in blood samples requires rapid, minimal sample handling, and non-destructive analysis, such as Raman Spectroscopy. This study aims to apply Raman Spectroscopy for identification of ethanol in blood samples. Silver nanoparticles were synthesized to obtain Surface Enhanced Raman Spectroscopy (SERS) spectra of blood samples. The SERS spectra were used for Partial Least Square (PLS) for determining ethanol quantitatively. To apply PLS method, $920{\sim}820cm^{-1}$ band interval was chosen and the spectral changes of the observed concentrations statistically associated with each other. The blood samples were examined according to this model and the quantity of ethanol was determined as that: first a calibration method was established. A strong relationship was observed between known concentration values and the values obtained by PLS method ($R^2=1$). Second instead of then, quantities of ethanol in 40 blood samples were predicted according to the calibration method. Quantitative analysis of the ethanol in the blood was done by analyzing the data obtained by Raman spectroscopy and the PLS method.

AI Technology Analysis using Partial Least Square Regression

  • Choi, JunHyeog;Jun, Sunghae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.109-115
    • /
    • 2020
  • In this paper, we propose an artificial intelligence(AI) technology analysis using partial least square(PLS) regression model. AI technology is now affecting most areas of our society. So, it is necessary to understand this technology. To analyze the AI technology, we collect the patent documents related to AI from the patent databases in the world. We extract AI technology keywords from the patent documents by text mining techniques. In addition, we analyze the AI keyword data by PLS regression model. This regression model is based on the technique of partial least squares used in the advanced analyses such as bioinformatics, social science, and engineering. To show the performance of our proposed method, we make experiments using AI patent documents, and we illustrate how our research can be applied to real problems. This paper is applicable not only to AI technology but also to other technological fields. This also contributes to understanding other various technologies by PLS regression analysis.

Utilization of R Program for the Partial Least Square Model: Comparison of SmartPLS and R (부분최소제곱모형을 위한 R 프로그램의 활용: SmartPLS와 R의 비교)

  • Kim, Yong-Tae;Lee, Sang-Jun
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.117-124
    • /
    • 2015
  • As the acceptance of statistical analysis has been increased because of Big Data, the needs for an advanced second generation of statistical analysis method like Structural Equation Model are also increasing. This study suggests how R-Program, as open software, can be utilized when Partial Least Square Model, one of the SEMs, is applied to statistical analysis. R is a free software as a part of GNU projects as well as a powerful and useful tool for statistical analysis including Big Data. The study utilized R and SmartPLS, a representative statistical package of PLS-SEM, and analyzed internal consistency reliability, convergent validity, and discriminant validity of the measurement model. The study also analyzed path coefficients and moderator effects of the structural model and compared the results, respectively. The results indicated that R showed the same results with SmartPLS on the measurement model and the structural model. Therefore, the study confirmed that R could be a powerful tool that is alternative to a commercial statistical package in the future.

Development of On-line Sorting System for Detection of Infected Seed Potatoes Using Visible Near-Infrared Transmittance Spectral Technique (가시광 및 근적외선 투과분광법을 이용한 감염 씨감자 온라인 선별시스템 개발)

  • Kim, Dae Yong;Mo, Changyeun;Kang, Jun-Soon;Cho, Byoung-Kwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • In this study, an online seed potato sorting system using a visible and near infrared (40 1100 nm) transmittance spectral technique and statistical model was evaluated for the nondestructive determination of infected and sound seed potatoes. Seed potatoes that had been artificially infected with Pectobacterium atrosepticum, which is known to cause a soil borne disease infection, were prepared for the experiments. After acquiring transmittance spectra from sound and infected seed potatoes, a determination algorithm for detecting infected seed potatoes was developed using the partial least square discriminant analysis method. The coefficient of determination($R^2_p$) of the prediction model was 0.943, and the classification accuracy was above 99% (n = 80) for discriminating diseased seed potatoes from sound ones. This online sorting system has good potential for developing a technique to detect agricultural products that are infected and contaminated by pathogens.

Hyperspectral Imaging and Partial Least Square Discriminant Analysis for Geographical Origin Discrimination of White Rice

  • Mo, Changyeun;Lim, Jongguk;Kwon, Sung Won;Lim, Dong Kyu;Kim, Moon S.;Kim, Giyoung;Kang, Jungsook;Kwon, Kyung-Do;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.293-300
    • /
    • 2017
  • Purpose: This study aims to propose a method for fast geographical origin discrimination between domestic and imported rice using a visible/near-infrared (VNIR) hyperspectral imaging technique. Methods: Hyperspectral reflectance images of South Korean and Chinese rice samples were obtained in the range of 400 nm to 1000 nm. Partial least square discriminant analysis (PLS-DA) models were developed and applied to the acquired images to determine the geographical origin of the rice samples. Results: The optimal pixel dimensions and spectral pretreatment conditions for the hyperspectral images were identified to improve the discrimination accuracy. The results revealed that the highest accuracy was achieved when the hyperspectral image's pixel dimension was $3.0mm{\times}3.0mm$. Furthermore, the geographical origin discrimination models achieved a discrimination accuracy of over 99.99% upon application of a first-order derivative, second-order derivative, maximum normalization, or baseline pretreatment. Conclusions: The results demonstrated that the VNIR hyperspectral imaging technique can be used to discriminate geographical origins of rice.

Online Multi-Object Tracking by Learning Discriminative Appearance with Fourier Transform and Partial Least Square Analysis

  • Lee, Seong-Ho;Bae, Seung-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.49-58
    • /
    • 2020
  • In this study, we solve an online multi-object problem which finds object states (i.e. locations and sizes) while conserving their identifications in online-provided images and detections. We handle this problem based on a tracking-by-detection approach by linking (or associating) detections between frames. For more accurate online association, we propose novel online appearance learning with discrete fourier transform and partial least square analysis (PLS). We first transform each object image into a Fourier image in order to extract meaningful features on a frequency domain. We then learn PLS subspaces which can discriminate frequency features of different objects. In addition, we incorporate the proposed appearance learning into the recent confidence-based association method, and extensively compare our methods with the state-of-the-art methods on MOT benchmark challenge datasets.

Computation of partial derivatives from an image

  • Yang, Woo-Suk;Han, Inhwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.526-531
    • /
    • 1992
  • Partial derivatives are easily computed analytically assuming that all the geometric information is known. However, there are computational difficulties in getting accurate partial derivatives directly from a range image since an image is a discrete version of continuous data contaminated with some noise. In this paper, we develop a general window function to compute partial derivatives based on the least square surface fitting method. A dynamic selective surface fitting method is introduced to make the window less sensitive to noise. Any degree of partial derivative can be obtained by a simple convolution between an image and window functions.

  • PDF

MOISTURE CONTENT MEASUREMENT OF POWDERED FOOD USING RF IMPEDANCE SPECTROSCOPIC METHOD

  • Kim, K. B.;Lee, J. W.;S. H. Noh;Lee, S. S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.188-195
    • /
    • 2000
  • This study was conducted to measure the moisture content of powdered food using RF impedance spectroscopic method. In frequency range of 1.0 to 30㎒, the impedance such as reactance and resistance of parallel plate type sample holder filled with wheat flour and red-pepper powder of which moisture content range were 5.93∼-17.07%w.b. and 10.87 ∼ 27.36%w.b., respectively, was characterized using by Q-meter (HP4342). The reactance was a better parameter than the resistance in estimating the moisture density defined as product of moisture content and bulk density which was used to eliminate the effect of bulk density on RF spectral data in this study. Multivariate data analyses such as principal component regression, partial least square regression and multiple linear regression were performed to develop one calibration model having moisture density and reactance spectral data as parameters for determination of moisture content of both wheat flour and red-pepper powder. The best regression model was one by the multiple linear regression model. Its performance for unknown data of powdered food was showed that the bias, standard error of prediction and determination coefficient are 0.179% moisture content, 1.679% moisture content and 0.8849, respectively.

  • PDF