DOI QR코드

DOI QR Code

Development of On-line Sorting System for Detection of Infected Seed Potatoes Using Visible Near-Infrared Transmittance Spectral Technique

가시광 및 근적외선 투과분광법을 이용한 감염 씨감자 온라인 선별시스템 개발

  • 김대용 (충남대학교 바이오시스템기계공학과) ;
  • 모창연 (농촌진흥청 농업공학부) ;
  • 강점순 (부산대학교 원예학과) ;
  • 조병관 (충남대학교 바이오시스템기계공학과)
  • Received : 2014.02.17
  • Accepted : 2014.11.11
  • Published : 2015.02.28

Abstract

In this study, an online seed potato sorting system using a visible and near infrared (40 1100 nm) transmittance spectral technique and statistical model was evaluated for the nondestructive determination of infected and sound seed potatoes. Seed potatoes that had been artificially infected with Pectobacterium atrosepticum, which is known to cause a soil borne disease infection, were prepared for the experiments. After acquiring transmittance spectra from sound and infected seed potatoes, a determination algorithm for detecting infected seed potatoes was developed using the partial least square discriminant analysis method. The coefficient of determination($R^2_p$) of the prediction model was 0.943, and the classification accuracy was above 99% (n = 80) for discriminating diseased seed potatoes from sound ones. This online sorting system has good potential for developing a technique to detect agricultural products that are infected and contaminated by pathogens.

본 연구에서는 온라인 감염 씨감자 비파괴선별 시스템을 구축하고 감염 씨감자 선별을 위한 통계적 모델을 개발하여 적용함으로써 선별시스템의 성능을 평가하였다. 선별모델 개발을 위해 토양병 및 잠복 감염의 대표적인 병원성 세균인 pectobacteruim atrosepticum을 인위적으로 씨감자에 감염시켜 씨감자 내부에 병징이 발현되도록 하여 실험하였다. 구축된 선별시스템을 통해 감염 및 정상 씨감자의 투과스펙트럼을 획득한 후 최소자승판별법(partial least square-discriminant analysis)을 이용하여 감염 씨감자 검출모델을 개발하였다. 개발된 모델의 검정결정계수는($R^2$) 0.943이었고 분류의 정확도는 99%(n=80) 이상으로 우수한 선별성능을 보였다. 개발된 온라인 감염 씨감자 선별시스템은 씨감자 선별뿐만 아니라 다양한 농산물의 감염을 검출하는 기반기술로 응용이 가능할 것으로 판단된다.

Keywords

References

  1. L. Mattinen, R. Nissinen, T. Riipi, N. Kalkkinen and M. Pirhonen, "Host-extract induced changes in the secretome of the plant pathogenic bacterium pectobacterium," Proteomics, Vol. 7, No. 19, pp. 3527-3537 (2007) https://doi.org/10.1002/pmic.200600759
  2. Y. I. Hahm, M. Kwon, J. S. Kim, H. W. Seo and J. H. Ahn, "Surveys on disease occurrence in major horticultural crops in Kangwon alpine areas," Korean J. Plant Pathol., Vol. 14, No. 6, pp. 668-675 (1998)
  3. C. H. Kim and Y. K. Kim, "Present status of soilborne disease incidence and scheme for its integrated management in Korea," Pes. Plant Dis., Vol. 8, No. 3, pp. 146-161 (2002) https://doi.org/10.5423/RPD.2002.8.3.146
  4. D. Y. Kim, B. K. Cho and Y. S. Lee, "Development of non-destructive measurement method for discriminating disease-infected seed potato using visible / near-infrared reflectance technique," CNU Journal of Agricultural Science, Vol. 39, No. 1, pp. 117-123 (2012) https://doi.org/10.7744/cnujas.2012.39.1.117
  5. D. Y. Kim, B. K. Cho, C. Y. Mo and Y. S. Kim, "Study on prediction on internal quality of cherry tomato using Vis/NIR spectroscopy," J. of Biosystems Eng., Vol. 35, No. 6, pp. 450-457 (2010) https://doi.org/10.5307/JBE.2010.35.6.450
  6. J. G. Lim, S. W. Kang, K. J. Lee, C. Y. Mo and J. Y. Son, "Identification of foreign objects in soybeans using near-infrared spectroscopy," Food Engineering Progress, Vol. 15, No. 2, pp. 136-142 (2011)
  7. L. Xie, Y. Ying and T. Ying, "Combination and comparison of chemometrics methods for identification of transgenic tomatoes using visible and near-infrared diffuse transmittance technique," Journal of Food Engineering, Vol. 82, pp. 395-401 (2007) https://doi.org/10.1016/j.jfoodeng.2007.02.062
  8. J. Y. Chen, H. Zhang, Y. Miao and R. Matsunaga, "NIR measurement of specific gravity of potato," Food Sci. Technol. Res., Vol. 11, No. 1, pp. 26-31 (2005) https://doi.org/10.3136/fstr.11.26
  9. H. G. Ahn and Y. H. Kim, "Discrimination of Korean domestic and foreign soybeans using near infrared reflectance spectroscopy," Korean J. Crop Sci., Vol. 57, No. 3, pp. 296-300 (2012) https://doi.org/10.7740/kjcs.2012.57.3.296
  10. D. Alexandrakis, G. Downey and A. G. M. Scannell, "Detection and identification of bacteria in an isolated system with near-infrared spectroscopy and multivariate analysis," J. Agric. Food Chem., Vol. 56, No. 10, pp. 3431-3437 (2008) https://doi.org/10.1021/jf073407x
  11. M. Cho, W. D. Jeong and J. Y. Yoon, "Application of UV technology for surface disinfection," J. of KSEE, Vol. 29, No. 9, pp. 1020-1026 (2007)
  12. D. S. Ryu, I. G. Hwang and S. H. Noh, "Pre-processing techniques on VIS/NIR spectral data for non-destructive quality evaluation of fruits," Proceedings of the Korean Society Agricultural Machinery 2000 Winter Conference, Vol. 5, No. 1, pp. 451-456 (2000)
  13. S. Lohumi, C. Y. Mo, J. S. Kang, S. J. Hong and B. K. Cho, "Nondestructive evaluation for the viability of watermelon (citrus lanatus) seeds using Fourier transform near infrared spectroscopy," J. of Biosystems Eng., Vol. 38, No. 4, pp. 312-317 (2013) https://doi.org/10.5307/JBE.2013.38.4.312
  14. H. J. Chun, H. C. Park, Y. M. Goo, T. W. Kim, K. S. Cho, H. S. Cho, D. J. Yun, W. S. Chung and S. W. Lee, "AtCBP63, a arabidopsis calmodulin-binding protein 63, enhances disease tesistance against soft rot disease in potato," J. Plant Biotechnol, Vol. 38, pp. 62-68 (2011) https://doi.org/10.5010/JPB.2011.38.1.062
  15. S. C. Bae, Y. S. Yeo, S. G. Heu, D. J. Hwang, M. O. Byun and S. J. Go, "Tolerance to potato soft rot disease in transgenic potato expressing aoybean ferritin gene," Korean J. Plant Biotechnology, Vol. 29, No. 4, pp. 229-233 (2002) https://doi.org/10.5010/JPB.2002.29.4.229
  16. M. Vanoli, A. Rizzolo, L. Spinelli, B. Parisi and A. Torricelli, "Nondestructive detection of internal brown spot in potato tubers by time-resolved reflectance spectroscopy: preliminary results on a susceptible cultivar," International Conference of Agricultural Engineering, valencia, Spain, (2012)
  17. J. G. Lim, S. W. Kang, K. J. Lee, C. Y. Mo and J. Y. Son, "Identification of foreign objects in soybeans using near-infrared spectroscopy," Food Engineering Progress. Vol. 15, No. 2, pp. 136-142 (2011)
  18. T. K. Min and W. S. Kang, "Nondestructive classification of viable and nonviable radish (raphanus sativus L.) seeds using single seed near infrared spectroscopy," Hort. Environ. Biotechnol., Vol. 49, No. 1, pp. 42-46 (2008)
  19. Y. A. Woo, H. J. Kim and H. I. Chung, "Classification of cultivation area of ginseng radix with NIR and Raman spectroscopy," Analyst, Vol. 124, pp. 1223-1226 (1999) https://doi.org/10.1039/a902396h
  20. D. Alexandrakis, G. Downey and A. G. M. Scannell, "Detection and identification of bacteria in an isolated system with near-infrared spectroscopy and multivariate analysis," J. Agric. Food Chem., Vol. 56, pp. 3431-3437 (2008) https://doi.org/10.1021/jf073407x
  21. G. ElMasry, N. Wang, C. Vigneault, J. Qiao and A. ElSayed, "Early detection of apple bruises on different background colors using hyperspectral imaging," LWT-Food Science and Technology, Vol. 41, pp. 337-345 (2008) https://doi.org/10.1016/j.lwt.2007.02.022
  22. Y. Shao, Y. He, A. H. Gomez, A. G. Pereir, Z. Qiu and Y. Zhang, "Visible/near infrared spectrometric technique for nondestructive assessment of tomato 'heatwave' (lycopersicum esculentum) quality characteristics," J. Food Eng., Vol. 81, No. 4, pp. 672-678 (2007) https://doi.org/10.1016/j.jfoodeng.2006.12.026

Cited by

  1. Estimating Moisture Content of Cucumber Seedling Using Hyperspectral Imagery vol.41, pp.3, 2016, https://doi.org/10.5307/JBE.2016.41.3.273