• 제목/요약/키워드: Partial Feedback Linearization

검색결과 14건 처리시간 0.017초

Exponential Stabilization of a Class of Underactuated Mechanical Systems using Dynamic Surface Control

  • Qaiser, Nadeem;Iqbal, Naeem;Hussain, Amir;Qaiser, Naeem
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권5호
    • /
    • pp.547-558
    • /
    • 2007
  • This paper proposes a simpler solution to the stabilization problem of a special class of nonlinear underactuated mechanical systems which includes widely studied benchmark systems like Inertia Wheel Pendulum, TORA and Acrobot. Complex internal dynamics and lack of exact feedback linearizibility of these systems makes design of control law a challenging task. Stabilization of these systems has been achieved using Energy Shaping and damping injection and Backstepping technique. Former results in hybrid or switching architectures that make stability analysis complicated whereas use of backstepping some times requires closed form explicit solutions of highly nonlinear equations resulting from partial feedback linearization. It also exhibits the phenomenon of explosions of terms resulting in a highly complicated control law. Exploiting recently introduced Dynamic Surface Control technique and using control Lyapunov function method, a novel nonlinear controller design is presented as a solution to these problems. The stability of the closed loop system is analyzed by exploiting its two-time scale nature and applying concepts from Singular Perturbation Theory. The design procedure is shown to be simpler and more intuitive than existing designs. Design has been applied to important benchmark systems belonging to the class demonstrating controller design simplicity. Advantages over conventional Energy Shaping and Backstepping controllers are analyzed theoretically and performance is verified using numerical simulations.

Active vibration control of nonlinear stiffened FG cylindrical shell under periodic loads

  • Ahmadi, Habib;Foroutan, Kamran
    • Smart Structures and Systems
    • /
    • 제25권6호
    • /
    • pp.643-655
    • /
    • 2020
  • Active control of nonlinear vibration of stiffened functionally graded (SFG) cylindrical shell is studied in this paper. The system is subjected to axial and transverse periodic loads in the presence of thermal uncertainty. The material composition is considered to be continuously graded in the thickness direction, also these properties depend on temperature. The relations of strain-displacement are derived based on the classical shell theory and the von Kármán equations. For modeling the stiffeners on the cylindrical shell surface, the smeared stiffener technique is used. The Galerkin method is used to discretize the partial differential equations of motion. Some comparisons are made to validate the SFG model. For suppression of the nonlinear vibration, the linear and nonlinear control strategies are applied. For control objectives, the piezoelectric actuator is attached to the external surface of the shell and the thin ring piezoelectric sensor is attached to the middle internal surface of shell. The effect of PID, feedback linearization and sliding mode control on the suppression of vibration for SFG cylindrical shell is presented.

A Time-Varying Gain Super-Twisting Algorithm to Drive a SPIM

  • Zaidi, Noureddaher;Jemli, Mohamed;Azza, Hechmi Ben;Boussak, Mohamed
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.955-963
    • /
    • 2013
  • To acquire a performed and practical solution that is free from chattering, this study proposes the use of an adaptive super-twisting algorithm to drive a single-phase induction motor. Partial feedback linearization is applied before using a super-twisting algorithm to control the speed and stator currents. The load torque is considered an unknown but bounded disturbance. Therefore, a time-varying switching gain that does not require prior knowledge of the disturbance boundary is proposed. A simple sliding surface is formulated as the difference between the real and desired trajectories obtained from the indirect rotor flux oriented control strategy. To illustrate the effectiveness of the proposed control structure, an experimental setup around a digital signal processor (dS1104) is developed and several tests are performed.

전익형 무인항공기의 복합손상을 고려한 적응형 신경망 제어기 설계 연구 (Adaptive Neural Network Controller Design for a Blended-Wing UAV with Complex Damage)

  • 김기준;안종민;김승균;석진영
    • 한국항공우주학회지
    • /
    • 제46권2호
    • /
    • pp.141-149
    • /
    • 2018
  • 본 논문에서는 전익형 무인항공기의 복합손상을 고려한 신경망 적응제어기 연구 결과를 기술하였다. 여기서 복합손상이란 무인항공기의 주익과 수직미익의 동시 손상을 의미한다. 시뮬레이션을 통하여 종/횡축 불안정성과 비행역학 특성을 확인하였다. 이를 바탕으로 두 가지 형태의 역변환 제어기 기반 적응형 신경망 제어기를 설계하였다. 또한 두 가지 역변환 제어기 구조에 따라 무인항공기의 복합 손상 시 제어 성능 분석을 수행하였다. 역변환 제어기 구조에 따라서 일반 상황과 손상 상황에서 성능 차이를 확인하였다. 최종적으로 무인기에 발생된 복합손상으로 인한 항공기의 불안정성은 적용된 제어기를 통하여 극복할 수 있음을 확인하였다.