• Title/Summary/Keyword: Parthenogenesis

Search Result 93, Processing Time 0.03 seconds

Microtubule and Microfilament Dynamics in Porcine Oocytes during Meiotic Maturation, Fertilization and Parthenogenesis (돼지 난자의 성숙, 수정 및 단위발생시 Microtubule과 Microfilament의 움직임)

  • 김남형;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.19 no.3
    • /
    • pp.205-216
    • /
    • 1995
  • Microtubules와 micrfilaments는 포유동물 난자이 주요한 세포 구조물들로, 이들은 난자의 성숙, 수정 및 배발달시 핵질의 이동과 세포질 분열에 직접 관여하는 것으로 알려져 왔다. 난자내 세포구조물의 정확한 움직임은 정상적인 배 발달을 위해 필수적이다. Microtubules는 $\alpha$, $\beta$- bubulin이 서로 연결되어 이루어져 있으며, 수정시 웅성.자성전핵 움직임과 세포분열시, 유사 및 감수분열시 그 역할을 한다. 생쥐를 제외한 대부분의 동물에서 microbubules의 역할은 수정시 정자가 centrosome을 난자내로 이전하여 sperm aster를 형성함으로써 시작된다고 보고되고 있다. 따라서 정자의 도움없이 배발달이 일어나는 단위발생시 microbubules의 형성은 연구들 사이에 흥미로운 연구대상이 되고 있다. 한편 microfilaments는 세포분열시 세포질을 분할하는 기계적인 역할을 하는 것으로 알려져 있으며, 최근 생쥐 난자에서는 정자의 난자내 융합과 웅성 및 자성 전핵의 이동에 관여한다고 보고되고 있다. 포유동물 난자의 체외성숙, 체외수정을 유도할 때 여러 가지 비정상적인 핵움직임과 세포분열이 관찰되어지고, 낮은 배발달율이 보고되고 있는데, 최근 연구자들은 세포구조물, 즉 microtubules와 microfilaments의 비정상적인 역할에서 기인한다고 보고 있다. 따라서 포유동물 난자의 성숙.수정 및 단위발생시 세포구조물의 움직임과 역할 및 상호관계에 대한 정확한 이해는 체외수정율 및 배발달 향상에 중요한 기초자료로 이용되리라고 본다.

  • PDF

An Improved Method of Parthenogenetic Development and Analysis of Combining Ability in Bivoltine Breeds of the Silkworm, Bombyx mori L.

  • Gangopadhyay, D.;Singh, Ravindra
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.13 no.2
    • /
    • pp.63-72
    • /
    • 2006
  • Parthenogenesis, the development of unfertilized ovum opens new perspectives in silkworm breeding in the development of homozygous breeds. In order to improve induction of artificial parthenogenesis in the excised unfertilized eggs of different breeds of the silkworm, Bombyx mori L., a new method was devised and the results were compared with the routine method. General and specific combining abilities and hybrid vigour of newly developed bivoltine breeds were analyzed utilizing bivoltine breeds viz., $CSR_2,\;CSR_4,\;CSR_{17}\;and\;NB_4D_2$ Estimation of GCA revealed superiority of the breeds, $DNB_1$ for eight characters followed by $DNB_4$ for five characters. Among the testers, $CSR_2$ was found good general combiner for seven characters followed by $CSR_{17}$ for four characters. A great deal of variations was observed among the hybrids studied. Five hybrids namely, $DNB_1{\times}CSR_2,\;DNB_4{\times}CSR_4,\;DNB_4{\times}NB_4D_2,\;DNB_6{\times}CSR_2\;and\;DNB_7{\times}CSR_2$ showed significant SCA effects for 5-6 characters. The hybrid, $DNB_4{\times}CSR_4$ showed its superiority by expressing significant hybrid vigour over BPV for 7 characters. Majority of the hybrids exhibited significant hybrid vigour for survival rate, yield/10,000 larvae by weight, cocoon weight, cocoon shell weight, filament length and denier.

Efficient method for generating homozygous embryonic stem cells in mice

  • Kim, Bitnara;So, Seongjun;Choi, Jiwan;Kang, Eunju;Lee, Yeonmi
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.48-54
    • /
    • 2022
  • Parthenogenesis is maternally uniparental reproduction through the embryonic development of oocytes without fertilization. Artificial activation of mature oocytes could generate homozygous haploid embryos with the extrusion of the second polar body. However, the haploid embryos showed low embryo development in preimplantation embryos. In this study, we investigated whether the electronic fusion of the haploid embryos could enhance embryo development and ESC establishment in mice. Haploid embryos showed the developmental delay from 4-cell to the blastocyst stage. The haploid blastomeres of the 2-cell stage were fused electronically, resulting in that the fused embryos showed a significantly higher rate of blastocysts compared to non-fused haploid embryos (55% vs. 37%). Further, the embryonic stem cells (ESCs) derived from the fused embryos were confirmed to be diploid. The rate of ESC establishment in fused embryos was significantly higher compared to non-fused ones. Based on the results, we concluded that the electronic fusion of haploid embryos could be efficient to generate homozygous ESCs.

Optimization of Post-Activation Systems to Improve the Embryonic Development in Porcine Parthenogenesis and Somatic Cell Nuclear Transfer

  • Roy, Pantu Kumar;Kim, Ghangyong;Fang, Xun;Hassan, Bahia MS;Soysa, Mahanama De;Shin, Sang Tae;Cho, Jong Ki
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.95-104
    • /
    • 2017
  • This study was conducted to establish the optimal chemical post-activation conditions in porcine embryonic development after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT) using 4 different chemical compositions (cytochalasin B (CB), cyclohexamide (CHX), demecolcine (DC), 6-dimethylaminopurine (DMAP). Porcine embryos were produced by PA and SCNT and then, cultured for post-activation with CB ($7.5{\mu}g/mL$), CB ($7.5{\mu}g/mL$) + CHX ($10{\mu}g/mL$), CB ($7.5{\mu}g/mL$) +DC ($0.4{\mu}g/mL$), and CB ($7.5{\mu}g/mL$) + DMAP (2 mM). In PA embryonic development, cleavage rates have been significantly higher in CB group (94.7%) and CB+DMAP group (94.1%) than that of CB+CHX and CB+DC group (88.1 and 84.3%, respectively). There have been no significant differences in blastocyst formation rates among the four groups. In cell number of blastocyst was shown in CB group (42.3%) significantly higher than CB+CHX and CB+DC group (40.6 and 40.6%, respectively). In SCNT embryonic development, CB+DMAP group (89.7%) significant differences were found on embryo cleavage rates when compared with other three groups. Blastocyst formation rates in CB+DMAP group (26.9%) were significantly higher when compared with CB, CB+CHX, and CB+DC groups (25.5, 20.2, and 22.1%, respectively). In blastocyst cell number, CB+DMAP group (41.4%) was found higher significant difference compared with other three groups. Additionally, we have investigated survivin expression in early development stages of porcine SCNT embryos for more confirmation. Our results establish that CB group and CB+DMAP group for 4 h during post-activation improves pre-implantation improvement of PA and SCNT embryos.

Effects of Fructose in a Chemically Defined Maturation Medium on Oocyte Maturation and Parthenogenetic Embryo Development in Pigs (돼지 난자의 체외성숙에서 합성배양액에 첨가된 과당이 난자의 성숙 및 단위발생 배아의 체외발육에 미치는 영향)

  • Shin, Hyeji;Kim, Minji;Lee, Joohyeong;Lee, Seung Tae;Park, Choon-Keun;Hyun, Sang-Hwan;Lee, Eunsong
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.139-146
    • /
    • 2017
  • The objective of this study was to determine the effect of fructose that was supplemented to a chemically defined in vitro maturation (IVM) medium on oocyte maturation and embryonic development after parthenogenesis in pigs. The base medium for in vitro maturation (IVM) was porcine zygote medium (PZM) that was supplemented with 0.05% (w/v) polyvinyl alcohol (PVA) or 10% (v/v) porcine follicular fluid (pFF). In the first experiment, when immature pig oocytes were matured in a chemically defined medium that was supplemented with 5.5 mM glucose or with 1.5, 3.0 and 5.5 mM fructose, 3.0 mM fructose resulted in a higher nuclear maturation (91.5%) than 1.5 and 5.5 mM fructose (81.9 and 81.9%, respectively) but showed a similar result with 5.5 mM glucose (94.2%). However, there was no significant differences among groups in the embryo cleavage (89.4-92.4%), blastocyst formation (37.5-41.1%), and mean cell number of blastocyst (30.8-34.2 cells). Fructose at the concentration of 3.0 mM (1.08 pixels/oocyte) resulted in a higher intra-oocyte glutathione (GSH) content than 1.5 and 5.5 mM fructose (1.00 and 0.87 pixels/oocytes, respectively) while the cumulus cell expansion was not influenced. In the second experiment, effect of individual and combined supplementation of a chemically defined maturation medium with 5.5 mM glucose or 3.0 mM fructose was examined. No significant effect was found in the nuclear maturation (86.3-92.6%). Embryo cleavage was significantly increased by the combined supplementation with glucose and fructose (95.2%) compared to that with 3.0 mM fructose only (85.7%) while blastocyst formation (37.3-42.8%) and embryonic cell number (33.3-34.1 cells) were not altered. Effect of supplementation of pFF-containing medium with glucose and fructose + glucose was examined in the third experiment. No significant effect by the supplementation with glucose and fructose or glucose alone was observed in the nuclear maturation of oocytes (90.7-94.1%) and blastocyst formation (51.0-56.5%). Our results demonstrate that 3.0 mM fructose was comparable to 5.5 mM glucose in supporting in vitro oocyte maturation and embryonic development after parthenogenesis and could be used as an alternative energy source to glucose for in vitro maturation of pig oocytes.

Cytoskeletal Alteration of Mammalian Oocytes During Meiotic Maturation, Fertilization and Parthenogenesis

  • Kim, Nam-Hyeong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.22 no.3
    • /
    • pp.253-258
    • /
    • 1995
  • Microtubules and microfilaments are major cytoskeletal components in mammalian ova that provide the framework for chromosomal movement and cellular division. Extensive changes of cytoskeletal organization occur during maturation and fertilization. The changes in cytoskeletons are essential for the normal meiotic maturation and for the formation of the biparental diploid genome of the embryo, and thus are repeated at each cell cycle during embryonic development. Disturbance of the cytoskeletal organization could result in abnormal gamete development and early embryonic death.

  • PDF

Nuclear and Cytoplasmic Dynamics in Mammalian Oocytes during Sexual and Asexual Developments (포유동물 난자의 유성 및 무성 발생과정 동안 핵 및 세포질의 변화)

  • Kim, Nam-Hyung
    • Development and Reproduction
    • /
    • v.4 no.1
    • /
    • pp.7-12
    • /
    • 2000
  • At fertilization, sperm penetrates into oocyte, male and female pronuclei are fused together, and mitotic division follows. However, little information is available on the interactive roles and dynamic processes between cytoplasmic and nuclear components during the pronuclear formation, migration and cell division. The assisted reproductive technologies such as, intracytoplasmic sperm injection (ICSI) and round spermatid injection(ROSI) could provides new treatments for the male infertility as well as tools for the study of basic mechanism during fertilization. Nuclear transfer can also provide a mechanism on the interactive roles between nucleus and cytoplasm since the process includes nuclear reprogrammming of differentiated cells in the enucleated oocytes. Recently, I have investigated developmental processes in porcine oocytes following fertilization parthenogenesis, ICSI, ROSI and nuclear transfer using indirect immunocytochemical and electron microscopic studies. The results could provide an insight into biological questions related with epigenesis as well as strategies for the enhancement of embryology in general such as ICSI and nuclear transfer.

  • PDF