• Title/Summary/Keyword: Part accuracy

Search Result 1,654, Processing Time 0.03 seconds

Otsu's method for speech endpoint detection (Otsu 방법을 이용한 음성 종결점 탐색 알고리즘)

  • Gao, Yu;Zang, Xian;Chong, Kil-To
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.40-42
    • /
    • 2009
  • This paper presents an algorithm, which is based on Otsu's method, for accurate and robust endpoint detection for speech recognition under noisy environments. The features are extracted in time domain, and then an optimal threshold is selected by minimizing the discriminant criterion, so as to maximize the separability of the speech part and environment part. The simulation results show that the method play a good performance in detection accuracy.

  • PDF

The Selection of Optimal Process Variables in UV-Vacuum Casting (UV-Vaccum Casting의 최적 공정 변수 선정)

  • Kim, T. W.;Woo, S. M.;Lee, S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.453-456
    • /
    • 2000
  • This paper presents experimental results on selecting optimal process parameters for UV-Vaccum casting. The UV-Vacuum casting is a relatively new process that allows very rapid mold preparation and part duplication via UV curing. Effect of various process variables such as pressure and temperature on mold strength and part accuracy was evaluated by using Taguchi method.

  • PDF

Conservative Upwind Correction Method for Scalar Linear Hyperbolic Equations

  • Kim, Sang Dong;Lee, Yong Hun;Shin, Byeong Chun
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.2
    • /
    • pp.309-322
    • /
    • 2021
  • A conservative scheme for solving scalar hyperbolic equations is presented using a quadrature rule and an ODE solver. This numerical scheme consists of an upwind part, plus a correction part which is derived by introducing a new variable for the given hyperbolic equation. Furthermore, the stability and accuracy of the derived algorithm is shown with numerous computations.

FE techniques for the accurate prediction of part dimension in cold forging (냉간 단조품의 치수 정밀 예측을 위한 유한요소해석 기술)

  • 이영선;권용남;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.29-33
    • /
    • 2003
  • The improvement of dimensional accuracy for forged part is one of major goals in cold forging industry. There are many problems in controlling the dimension only by the trial-and-error, especially for a precision forged gear. A FEM analysis has been used in developing the forging technology. However, FE techniques have to be reconfirmed for predicting accurately the dimension of forged part. In this study, the effects of elastic characteristics and temperature changes are investigated by the comparisons between experimental and FEA in cold forging. When FE models related with elastic characteristics are considered as reality, FE results could predict the part dimension within the range of 10 $\mu\textrm{m}$. And if temperature also is considered really, the predicted dimensions are well coincided with the experimental down to about 5$\mu\textrm{m}$.

  • PDF

Development of a fixture for 3D Laser Scanning (3차원 전 형상 측정을 위한 고정구의 개발)

  • 최창원;엄현종;박병현;김세나;박미나;이응기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.142-145
    • /
    • 2004
  • More complex geometric shapes, including freeform surfaces, are adopted for the design of products to emphasize styling or aesthetics. Modeling of these products is extremely difficult, and often impossible. Reverse engineering is an emerging technology that can resolve this problem by generating CAD models from the physical mockups or prototype models. The laser scanner if often used to acquire the surface information of the part, but is limited in its measuring direction, which if fixed only along the z-axis. A Designed fixture of new shape to supplement these problems in this paper. The new fixture using several joints and an tooling ball holder is designed considering the convenience of the part set-up and the accuracy of the registration. The location of the tooling balls can be arranged to avoid the occlusion of the part and to minimize the registration error. The new fixture is apply to an object part having freeform surfaces to verify the effectiveness of the proposed design.

  • PDF

Development of Tracking System for Micro Mechanical Part Using Image Processing Technique and 2-Axis Stage (영상처리기법과 2축 스테이지를 이용한 미세부품의 추적 시스템 개발)

  • 표창률;강성훈;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.273-278
    • /
    • 2004
  • This paper subscribes the measurement system that can position the target to measure by moving 2-axis stage, which is controlled by the data from image processing technique. The high resolution camera and lens are used in measurement of micro mechanical part, but the region of measurement is very small. It is necessary the re-positioning to measure several regions in one part. The system described in this paper has the accuracy with about $0.9\mu\textrm{m}$ resolution per one pixel and can be applied to measure micro mechanical part.

Determination of Optimal Build Orientation Based on Satisfactory Degree Theory for RPT

  • Zhao, Jibin;Liu, Weijun;Wu, Jianhuang
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • In rapid prototyping, the optimal part orientation during fabrication is critical as it can improve part accuracy, minimize the requirement for supports and reduce the production time. Through investigating the geometric issues of STL model and process planning of RPM, This paper establishes optimizing model based on the considerations of staircase effect, support area and production time. The general satisfactory degree function is constructed employing the multi-objective optimization theory based on the general satisfactory degree principle. The best part-building orientation is obtained by solving the function employing generic algorithm. Experiment shows that the methods can effective resolve the part-building orientation in RP.

FE Techniques for the Accurate Prediction of Part Dimension in Cold Forging (냉간 단조품의 치수 정밀 예측을 위한 유한 요소 해석 기술)

  • 이영선;권용남;이정환
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.3-8
    • /
    • 2004
  • The improvement of dimensional accuracy for forged part is one of major goals in cold forging industry. There are many problems in controlling the dimension by the trial-and-error, especially for a precision forged gear. A FEM analysis has been used in developing the forging technology. However, FE techniques have to be reconfirmed for predicting accurately the dimension of forged part. In this study, the effects of elastic characteristics and temperature changes are investigated by the comparisons between experimental and FEA in cold forging. When FE models related with elastic characteristics are considered practically, FE results could predict the part dimension within the range of $10\mu\textrm{m}$. And if thermal effects also are considered additionally, the predicted dimensions are well coincided with the experimental down to about $5\mu\textrm{m}$.

A Study on the Charactdristics of CNC Deep Hole Maching for Marine Part Materials with the Sintered Carbide Gun Drill (초경합금 Gun Drill에 의한 박용 부품 재료의 CNC 심공가공 특성에 관한 연구)

  • 전태옥;심성보
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.64-74
    • /
    • 1994
  • The gundrill is capable of machining for having large length to diameter ratio in single pass. The techniques of gundrill and gun boring began developing in the late 18th century with the need for more accurate bores in rifle, cannon, machinery part and marine part etc. The main feature of the gun drilling provides a stabilizing cutting force resultant necessary for self guidance of the drill head. A study of the accuracy and surface finish of holes produced would reveal quite useful information regarding the process. The thesis deals with the experimental results obtained during gun drilling on marine part materials for different machining conditions.

  • PDF

Improvement of the Thermal Behavior of the Secondary Part of Synchronous Linear Motors with High Speed and Thrust (고속.대추력 동기식 리니어모터 세컨더리 파트의 열특성 향상)

  • Eun, In-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.505-512
    • /
    • 2011
  • Linear permanent magnet synchronous motors utilize high-energy product permanent magnet to produce high thrust, velocity and acceleration. Such motors are finding applications requiring high positioning accuracy and speed response, for example, machine tools, in the absence of mechanical gears and ball screw systems. A disadvantage of the linear motors is high power loss in comparison with rotary motors. For the application of the linear motors to machine tools, it is required to use water coolers and to improve the thermal behavior through insulation and structure optimization or control strategies. This paper presents the function of the secondary part of the linear synchronous motor as to the thermal behavior and the improving method. The result shows cooling pipe combined with an insulation layer is a suitable design for improving of the thermal behavior.