• Title/Summary/Keyword: Parking Slot

Search Result 8, Processing Time 0.026 seconds

A development of Intelligent Parking Control System Using Sensor-based on Arduino

  • LIM, Myung-Jae;JUNG, Dong-Kun;KWON, Young-Man
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.29-34
    • /
    • 2021
  • In this paper, for efficient parking control, in an Arduino environment, an intelligent parking control prototype was implemented to provide parking control and parking guidance information using HC-SR2O4 and RC522. The main elements of intelligent parking control are vehicle recognition sensors, parking control facilities, and integrated operating software. Whether the vehicle is parked on the parking surface may be confirmed through sensor or intelligent camera image analysis. Parking control equipment products include parking guidance and parking available display devices, vehicle number recognition cameras, and intelligent parking assistance systems. This paper applies and implements ultrasonic sensors and RFID concepts based on Arduino, recognizes registered vehicles, and displays empty spaces. When a vehicle enters a parking space to handle this function, the automatic parking management system distinguishes the registered vehicle from the external vehicle through the RC522 sensor. In addition, after checking whether the parking slot is empty, the HC-SR204 sensor is displayed through the LED so that the driver can visually check it. RFID is designed to check the parking status of the server in real time and provide the driver with optimal route service to the parking slot.

Smart Vehicle Parking Management System using Image Processing

  • Waqas, Maria;Iftikhar, Umar;Safwan, Muhammad;Abidin, Zain Ul;Saud, Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.161-166
    • /
    • 2021
  • The term parking management system usually refers to the custom built hardware intensive systems installed in building and malls. However, there are many places where such expensive solutions cannot be installed due to various reasons, like cost and urgent/temporary setup requirements. This project focuses on developing a parking management system based on image processing to detect vacant parking slot in an area where automated systems are not installed. Camera images of the parking area are subjected to image processing algorithm which marks virtual slots in the area and extracts occupancy information to guide the incoming drivers about availability and position of vacant spaces. The application consists of two interfaces: one for the guidance of the incoming drivers and the other one for the administrator. The later interface also informs the administrator if a car is not parked properly in the virtual slot. This parking system would reduce the stress and time wastage associated with car parking and would make the management of such areas less costly.

An Intelligent Auto Parking System for Vehicles

  • Razinkova, Anastasia;Cho, Hyun-Chan;Jeon, Hong-Tae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.226-231
    • /
    • 2012
  • Autoparking assistant systems are a new and very promising area in automotive systems engineering. Since the traffic in modern cities becomes more intense, it is getting harder for a driver. Those systems are necessary for an inexperienced one to find a proper parking slot, or to park in a narrow parking slot without damaging his car or the vehicles around. The implementation of autoparking assistant systems may reduce drivers' stress and make parking generally more comfortable. In addition, such system can be extremely useful for senior or disabled people or for drivers with reduced mobility. The implementation of autoparking assistant systems may increase the safety of the parking, and therefore the development of such systems is a highly-demanded task. We introduce an intelligent autoparking system that automatically generates trajectory for parking using a fuzzy logic. This paper consists of three parts. In first part we introduce trajectory generation method for parallel parking without collisions. Fuzzy-logic based trajectory generation algorithm is described in second part. Experimental results presented in the third part of the paper prove effectiveness of the proposed method.

Template Mask based Parking Car Slots Detection in Aerial Images

  • Wirabudi, Andri Agustav;Han, Heeji;Bang, Junho;Choi, Haechul
    • Journal of Broadcast Engineering
    • /
    • v.27 no.7
    • /
    • pp.999-1010
    • /
    • 2022
  • The increase in vehicle purchases worldwide is having a very significant impact on the availability of parking spaces. In particular, since it is difficult to secure a parking space in an urban area, it may be of great help to the driver to check vehicle parking information in advance. However, the current parking lot information is still operated semi-manually, such as notifications. Therefore, in this study, we propose a system for detecting a parking space using a relatively simple image processing method based on an image taken from the sky and evaluate its performance. The proposed method first converts the captured RGB image into a black-and-white binary image. This is to simplify the calculation for detection using discrete information. Next, a morphological operation is applied to increase the clarity of the binary image, and a template mask in the form of a bounding box indicating a parking space is applied to check the parking state. Twelve image samples and 2181 total of test, were used for the experiment, and a threshold of 40% was used to detect each parking space. The experimental results showed that information on the availability of parking spaces for parking users was provided with an accuracy of 95%. Although the number of experimental images is somewhat insufficient to address the generality of accuracy, it is possible to confirm the possibility of parking space detection with a simple image processing method.

Parking Location Control Algorithm for Self-Driving Cars (자율주행 자동차를 위한 주차 위치 제어 알고리즘)

  • Tariq, Shahroz;Park, Heemin
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.12
    • /
    • pp.654-662
    • /
    • 2016
  • With the advent of autonomous cars, we explored the problems which will soon arise while parking in car parks. These include structure of parking lot suitable for autonomous cars, finding the closest parking slot available, and navigation to the location. We provide an initial solution, wherein we use a central server and the graph of the parking lot to guide cars to the closest parking slots available. Our experiments have shown that the proposed method is effective for the controlled parking for self-driving cars.

Parking Space Recognition for Autonomous Valet Parking Using Height and Salient-Line Probability Maps

  • Han, Seung-Jun;Choi, Jeongdan
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1220-1230
    • /
    • 2015
  • An autonomous valet parking (AVP) system is designed to locate a vacant parking space and park the vehicle in which it resides on behalf of the driver, once the driver has left the vehicle. In addition, the AVP is able to direct the vehicle to a location desired by the driver when requested. In this paper, for an AVP system, we introduce technology to recognize a parking space using image sensors. The proposed technology is mainly divided into three parts. First, spatial analysis is carried out using a height map that is based on dense motion stereo. Second, modelling of road markings is conducted using a probability map with a new salient-line feature extractor. Finally, parking space recognition is based on a Bayesian classifier. The experimental results show an execution time of up to 10 ms and a recognition rate of over 99%. Also, the performance and properties of the proposed technology were evaluated with a variety of data. Our algorithms, which are part of the proposed technology, are expected to apply to various research areas regarding autonomous vehicles, such as map generation, road marking recognition, localization, and environment recognition.

A Low Power Parking Management System for Intelligent Building (인텔리전트 빌딩을 위한 저 전력 주차관리 시스템)

  • Lee, Chang-Ki;Im, Hyung-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1479-1485
    • /
    • 2012
  • The parking management system can increase driver's convenience with detailed parking information service in the parking lot. At the same time, parking management system consumes non-negligible electrical energy with large amount of sensors, displays and control modules. With the increase in the demand for green and sustainable building design all over the world, it becomes a meaningful issue for parking management system to reduce operating power. This paper presents the preliminary design and estimated results of a parking management system which is optimized to reduce the power consumption mainly on detectors and displays. The system design is based on pre-developed wireless parking detectors, Park Tile and Park Disk. The system has a number of parking space detectors, vehicle count detectors, information displays, guidance terminals and other control units. We have performed system architecture design, communication network design, parking information service scenario planning, battery life regulation and at last operating power estimation. The estimated operating power was 0.93KW per parking-slot, which is 20% of traditional systems. The estimated annual maintenance cost was 18% of traditional systems.

A Study on Improvement of Parking Guidance System to Low-Power Operation for Green Building

  • Lee, Jeong-Jun;Oh, Young-Tae;Lee, Choul-Ki;Yun, Il-Soo;Chung, Sang-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.3
    • /
    • pp.1-8
    • /
    • 2011
  • The parking guidance system can increase driver's convenience with detailed parking information service, but it continuously consumes electrical energy with large amount of sensors, displays and control modules. With the increase of the demand for green and sustainable building design, it becomes a meaningful issue for parking guidance system to reduce operating power. This paper presents the preliminary design and estimated results of a parking guidance system which is optimized to reduce the power consumption mainly on detectors and displays. The system design is based on commercial wireless parking detectors, wireless-loop-detector and earth-magnetic-detector. We have performed system architecture design, communication network design, parking information service scenario planning, battery life regulation and at last operating power estimation. With the 7 years of battery replace cycle, the estimated result for power consumption of designed system was 0.33W/slot, which is 13% of the traditional system's estimation result. The estimated annual maintain cost was similar to the traditional ultrasonic sensor based system's. The low power operable designed system can be expected to reduce CO2 emission.