• Title/Summary/Keyword: Park facility

Search Result 2,310, Processing Time 0.026 seconds

Transition Program for Youth With Disabilities: Research Trend Analysis and Systematic Review (장애청소년의 전환프로그램 : 연구 동향 분석과 체계적 고찰)

  • An, Su-bin;Park, Hae Yean
    • Therapeutic Science for Rehabilitation
    • /
    • v.11 no.3
    • /
    • pp.23-36
    • /
    • 2022
  • Objectives : This study aimed to provide basic data on intervention strategies that occupational therapists can access by systematically analyzing the intervention and effectiveness for youth with disabilities. Methods : The RISS, PubMed, and Web of Science databases were used to search for papers published between 2006 and 2021. The keywords were "Disability AND Adolescents OR Young adult AND Transition education OR Transition program". Seven papers were selected for analysis, and the full text was reviewed. The keywords and national relations were analyzed and visualized using the WoS (Web of Science) and VOSviewer programs. Results : The participants were classified into five types (ASD or ADHD, ID, DD, and physical disability). The areas used for the intervention were mixed into three categories: occupation (academic), self-management (time), and interaction (personal relations and communication). Sociality and adaptation, quality of life, and at least one of the three categories of daily life activities showed significant improvement. Conclusions : This study can be used as basic data to expand the area where only OTs can contribute while grasping the research trend of the conversion program and presenting the direction of exchange with various experts by organizing the application and its effects.

Technology Trends of Smart Abnormal Detection and Diagnosis System for Gas and Hydrogen Facilities (가스·수소 시설의 스마트 이상감지 및 진단 시스템 기술동향)

  • Park, Myeongnam;Kim, Byungkwon;Hong, Gi Hoon;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.41-57
    • /
    • 2022
  • The global demand for carbon neutrality in response to climate change is in a situation where it is necessary to prepare countermeasures for carbon trade barriers for some countries, including Korea, which is classified as an export-led economic structure and greenhouse gas exporter. Therefore, digital transformation, which is one of the predictable ways for the carbon-neutral transition model to be applied, should be introduced early. By applying digital technology to industrial gas manufacturing facilities used in one of the major industries, high-tech manufacturing industry, and hydrogen gas facilities, which are emerging as eco-friendly energy, abnormal detection, and diagnosis services are provided with cloud-based predictive diagnosis monitoring technology including operating knowledge. Here are the trends. Small and medium-sized companies that are in the blind spot of carbon-neutral implementation by confirming the direction of abnormal diagnosis predictive monitoring through optimization, augmented reality technology, IoT and AI knowledge inference, etc., rather than simply monitoring real-time facility status It can be seen that it is possible to disseminate technologies such as consensus knowledge in the engineering domain and predictive diagnostic monitoring that match the economic feasibility and efficiency of the technology. It is hoped that it will be used as a way to seek countermeasures against carbon emission trade barriers based on the highest level of ICT technology.

Analysis of Correlation between Freeze-Thaw Damage on Concrete and Chloride Penetration Acceleration Effect Using Surface Rebound Value (표면반발경도 활용 콘크리트 동해손상과 염분 침투 가속효과의 상관관계 분석)

  • Park, Ji-Sun;Lee, Jong-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.148-156
    • /
    • 2022
  • Although most domestic concrete structures are simultaneously exposed to freeze-thaw and chloride environments, concrete durability in the field is evaluated by each single action, and the evaluation of chloride-caused damage of concrete requires additional indoor experimental analysis of chloride contents by coring samples from structures in the field. However, in Korea, policies to strengthen facility maintenance, such as 「Special Act on the Safety Control and Maintenance of Establishments」 and 「Framework Act on Sustainable Infrastructure Management」, have been established and implemented since 2018 and facilities subject to safety inspection management by the government and local governments increases, the effective simplification technology for the inspection and diagnosis of concrete structure is needed. Therefore, this study attempted to evaluate the possibility of determining the acceleration chloride penetration of freeze-thaw damaged concrete by using the surface rebound value. For this purpose, concrete specimens already having freeze-thaw damage by exposure to the freeze-thaw acceleration environment were immersed in chloride water. After that, the acceleration relationship of chloride penetration according to freeze-thaw damage was analyzed using the amount of chloride contents in concrete.

Experimental Study on Frictional Healing Behavior of Rock Joints in the Natural Barriers under Hydro-Mechanical Conditions (천연방벽 내 암반 절리의 수리-역학적 조건에서의 마찰회복 거동에 대한 실험적 연구)

  • Yong-Ki Lee;Seungbeom Choi;Kyung-Woo Park;Jin-Seop Kim;Taehyun Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.1
    • /
    • pp.42-56
    • /
    • 2023
  • In deep geological disposal of high-level radioactive waste (HLW), the natural barrier must physically support the disposal facility and delay the movement of radionuclides for at least hundreds of thousands of years. To evaluate the long-term geological evolution of the natural barriers, it is essential to analyze the long-term behavior of rock joints, including the frictional healing behavior. This study aimed to experimentally analyze the frictional healing behavior of rock joints under hydro-mechanical (H-M) conditions through the slide-hold-slide (SHS) test. The SHS tests were performed under mechanical and H-M conditions for joint specimens of different roughness. In the H-M conditions, the frictional healing rate tended to increase, which was more evident in the specimens with large roughness. In addition, it was confirmed that the effect of the hydro-mechanical conditions was more significant when the effective normal stress acting on the joint surface was small. These results are expected to be used as fundamental data to understand the frictional healing behavior of rock joints in the natural barriers.

A Study on the Residents Consciousness in Emergency Planning Zone for Radioactive Disasters (방사능 재난에 대한 방사선비상계획구역내 주민의식조사)

  • Namhee Park
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.729-745
    • /
    • 2022
  • Purpose: This study collects basic data on the awareness of evacuation methods and evacuation facilities in the event of a radiological disaster of residents living in the emergency planning zone. Method: The residents of emergency planning zone were sampled using a random sampling method. A 1:1 interview was conducted using a structured questionnaire, and statistical analysis was performed using the minitab program. Result: First, the survey subjects showed a relatively low and negative awareness of the local government's work on radioactive disasters. Second, in terms of resident safety education, they had little experience in education, but they felt it was necessary and wanted education on evacuation methods, action tips, and the location of relief centers. Third, the location of the relief centers related to radioactive disasters was not well known, and there were many responses that they did not receive any guidance, and that they would be with their families when using the relief centers. Satisfaction levels were generally low with regard to the relief facilities. Fourth, the necessary priorities in preparation for radioactive disasters were education and training for radioactive disasters, facility supplementation, and supply of protective chemicals. Conclusion: The residents of emergency planning zone perceived the policies and tasks of the government or local governments relatively negatively in preparation for the occurrence of radioactive disasters, and their satisfaction was low. Regarding the matters pointed out as a priority, the government and local governments should publicize and educate the residents of accurate information and policies on radioactive disasters.

Towards Carbon-Neutralization: Deep Learning-Based Server Management Method for Efficient Energy Operation in Data Centers (탄소중립을 향하여: 데이터 센터에서의 효율적인 에너지 운영을 위한 딥러닝 기반 서버 관리 방안)

  • Sang-Gyun Ma;Jaehyun Park;Yeong-Seok Seo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.4
    • /
    • pp.149-158
    • /
    • 2023
  • As data utilization is becoming more important recently, the importance of data centers is also increasing. However, the data center is a problem in terms of environment and economy because it is a massive power-consuming facility that runs 24 hours a day. Recently, studies using deep learning techniques to reduce power used in data centers or servers or predict traffic have been conducted from various perspectives. However, the amount of traffic data processed by the server is anomalous, which makes it difficult to manage the server. In addition, many studies on dynamic server management techniques are still required. Therefore, in this paper, we propose a dynamic server management technique based on Long-Term Short Memory (LSTM), which is robust to time series data prediction. The proposed model allows servers to be managed more reliably and efficiently in the field environment than before, and reduces power used by servers more effectively. For verification of the proposed model, we collect transmission and reception traffic data from six of Wikipedia's data centers, and then analyze and experiment with statistical-based analysis on the relationship of each traffic data. Experimental results show that the proposed model is helpful for reliably and efficiently running servers.

A Study on the Application of Non-destructive (Ultrasonic) Inspection Technique to Detect Defects of Anchor Bolts for Road Facilities (도로시설물 적용 앵커볼트 결함 검출을 위한 비파괴(Ultrasonic) 검사 기법 적용에 대한 연구)

  • Dong-Woo Seo;Jaehwan Kim;Jin-Hyuk Lee;Han-Min Cho;Sangki Park;Min-Soo Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.11-20
    • /
    • 2022
  • The general non-destructive inspection method for anchor bolts in Korea applies visual inspection and hammering inspection, but it is difficult to check corrosion or fatigue cracks of anchor bolts in the part included in the foundation or in the part where the nut and base plate are installed. In reality, objective investigation is difficult because inspection is affected by the surrounding environment and individual differences, so it is necessary to develop non-destructive inspection technology that can quantitatively estimate these defects. Inspection of the anchor bolts of domestic road facilities is carried out by visual inspection, and since the importance of anchor bolts such as bridge bearings and fall prevention facilities is high, the life span of bridges is extended through preventive maintenance by developing non-destructive testing technology along with existing inspection methods. Through the development of this technology, non-destructive testing of anchor bolts is performed and as a technology capable of preemptive/active maintenance of anchor bolts for road facilities, practical use is urgently needed. In this paper, the possibility of detecting defects in anchor bolts such as corrosion and cracks and reliability were experimentally verified by applying the ultrasonic test among non-destructive inspection techniques. When the technology development is completed, it is expected that it will be possible to realize preemptive/active maintenance of anchor bolts by securing source technology for improving inspection reliability.

Review of the Priority Index for Selection between Repair and Reinforcement Methods of Dam Facilities (댐 시설물 보수·보강공법 선정을 위한 우선순위지수에 대한 고찰 )

  • Dong Hyun Kim;Hyung Jun Park;Hee Jung Youn;Seung Oh Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.1-11
    • /
    • 2023
  • After the collapse of the Seongsu Bridge in the 1990s in Korea, attention was focused on the maintenance of facilities. The government has established various policies since the enactment of the Act in 1995 until recently. In general, safety inspections are performed to evaluate the safety grade of facilities, and facilities are maintained and managed by performing repairs and reinforcements for defects. However, since the budget is limited, it is impossible to carry out repair and reinforcement projects for all defects. It is necessary to prioritize repair and reinforcement measures. Then, the priority index (PI) is presented considering the importance of members, the seriousness of defects, and economic feasibility. In this index, the degree of influence can be adjusted within the range of 50 to 100% according to the expert's subjective judgment, and the same weight is set for some specific members. Also, the effect through repair and reinforcement is not taken into account decisively, and most of them have a limit in which priority is determined by economic feasibility. Therefore, in this study, through several case studies, problems with the priority index were reviewed and an equation was presented to improve them.

A Study on the Color Environment of Preference Tendency in Public Library - Focused on Busan City - (공공도서관 환경색채의 선호경향에 관한 연구 - 부산지역을 중심으로 -)

  • Lee, Min Jae;Park, Hey Kyung
    • Korea Science and Art Forum
    • /
    • v.24
    • /
    • pp.321-332
    • /
    • 2016
  • As functions of public library has become diversified, proper environment color plan enhancing a supporting environment of user based on a function of public library should be achieved by utilizing space chromatics which is a psychological environmental factor. Therefore, public library's color environment of each space functions should be understood and the foundation of color plan enhancing supporting environment of user should also be established under the premise that public library color environment which supports integrated functions to every local residents by meeting functional roles of library. As functions of public library expands, this study has its purpose to analyze color environment characteristics by mainly focusing on library of Busan region to study color environment supporting function of each space. Through a literature research, function and role of color, environment color have considered, and through a preceding research analysis on public library's present condition analysis and tendency of library color preference, theoretical background on library color environment has deducted. By researching present condition of environment color application at 9 public libraries located at Busan, the environment color characteristics of library has deducted through an image adjective analysis using color system, coloration analysis, IRI(Image Research Institute) color image scale. This study can be provided as a reference data for environment color plan based on spatial function to enhance supporting environment of public library user, and it is expected to utilize in the library facility plan which has been diversified.

A Study on the Prediction of Nitrogen Oxide Emissions in Rotary Kiln Process using Machine Learning (머신러닝 기법을 이용한 로터리 킬른 공정의 질소산화물 배출예측에 관한 연구)

  • Je-Hyeung Yoo;Cheong-Yeul Park;Jae Kwon Bae
    • Journal of Industrial Convergence
    • /
    • v.21 no.7
    • /
    • pp.19-27
    • /
    • 2023
  • As the secondary battery market expands, the process of producing laterite ore using the rotary kiln and electric furnace method is expanding worldwide. As ESG management expands, the management of air pollutants such as nitrogen oxides in exhaust gases is strengthened. The rotary kiln, one of the main facilities of the pyrometallurgy process, is a facility for drying and preliminary reduction of ore, and it generate nitrogen oxides, thus prediction of nitrogen oxide is important. In this study, LSTM for regression prediction and LightGBM for classification prediction were used to predict and then model optimization was performed using AutoML. When applying LSTM, the predicted value after 5 minutes was 0.86, MAE 5.13ppm, and after 40 minutes, the predicted value was 0.38 and MAE 10.84ppm. As a result of applying LightGBM for classification prediction, the test accuracy rose from 0.75 after 5 minutes to 0.61 after 40 minutes, to a level that can be used for actual operation, and as a result of model optimization through AutoML, the accuracy of the prediction after 5 minutes improved from 0.75 to 0.80 and from 0.61 to 0.70. Through this study, nitrogen oxide prediction values can be applied to actual operations to contribute to compliance with air pollutant emission regulations and ESG management.