• Title/Summary/Keyword: Park Classification

Search Result 4,160, Processing Time 0.032 seconds

Combining Geostatistical Indicator Kriging with Bayesian Approach for Supervised Classification

  • Park, No-Wook;Chi, Kwang-Hoon;Moon, Wooil-M.;Kwon, Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.382-387
    • /
    • 2002
  • In this paper, we propose a geostatistical approach incorporated to the Bayesian data fusion technique for supervised classification of multi-sensor remote sensing data. Traditional spectral based classification cannot account for the spatial information and may result in unrealistic classification results. To obtain accurate spatial/contextual information, the indicator kriging that allows one to estimate the probability of occurrence of classes on the basis of surrounding observations is incorporated into the Bayesian framework. This approach has its merit incorporating both the spectral information and spatial information and improves the confidence level in the final data fusion task. To illustrate the proposed scheme, supervised classification of multi-sensor test remote sensing data set was carried out.

  • PDF

Classification of Sleep Stages Using EOG, EEG, EMG Signal Analysis (안전도, 뇌파도, 근전도 분석을 통한 수면 단계 분류)

  • Kim, HyoungWook;Lee, YoungRok;Park, DongGyu
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1491-1499
    • /
    • 2019
  • Insufficient sleep time and bad sleep quality causes many illnesses and it's research became more and more important. The most common method for measuring sleep quality is the polysomnography(PSG). The PSG is a test used to diagnose sleep disorders. The most common PSG data is obtained from the examiner, which attaches several sensors on a body and takes sleep overnight. However, most of the sleep stage classification in PSG are low accuracy of the classification. In this paper, we have studied algorithm for sleep level classification based on machine learning which can replace PSG. EEG, EOG, and EMG channel signals are studied and tested by using CNN algorithm. In order to compensate the performance, a mixed model using both CNN and DNN models is designed and tested for performance.

Performance Comparison of Guitar Chords Classification Systems Based on Artificial Neural Network (인공신경망 기반의 기타 코드 분류 시스템 성능 비교)

  • Park, Sun Bae;Yoo, Do-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.3
    • /
    • pp.391-399
    • /
    • 2018
  • In this paper, we construct and compare various guitar chord classification systems using perceptron neural network and convolutional neural network without pre-processing other than Fourier transform to identify the optimal chord classification system. Conventional guitar chord classification schemes use, for better feature extraction, computationally demanding pre-processing techniques such as stochastic analysis employing a hidden markov model or an acoustic data filtering and hence are burdensome for real-time chord classifications. For this reason, we construct various perceptron neural networks and convolutional neural networks that use only Fourier tranform for data pre-processing and compare them with dataset obtained by playing an electric guitar. According to our comparison, convolutional neural networks provide optimal performance considering both chord classification acurracy and fast processing time. In particular, convolutional neural networks exhibit robust performance even when only small fraction of low frequency components of the data are used.

Game Traffic Classification Using Statistical Characteristics at the Transport Layer

  • Han, Young-Tae;Park, Hong-Shik
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.22-32
    • /
    • 2010
  • The pervasive game environments have activated explosive growth of the Internet over recent decades. Thus, understanding Internet traffic characteristics and precise classification have become important issues in network management, resource provisioning, and game application development. Naturally, much attention has been given to analyzing and modeling game traffic. Little research, however, has been undertaken on the classification of game traffic. In this paper, we perform an interpretive traffic analysis of popular game applications at the transport layer and propose a new classification method based on a simple decision tree, called an alternative decision tree (ADT), which utilizes the statistical traffic characteristics of game applications. Experimental results show that ADT precisely classifies game traffic from other application traffic types with limited traffic features and a small number of packets, while maintaining low complexity by utilizing a simple decision tree.

Automatic Basal Cell Carcinoma Detection using Confocal Raman Spectra (공초점 라만스펙트럼을 이용한 자동 기저세포암 검출)

  • Min, So-Hee;Park, Aaron;Baek, Seong-Joon;Kim, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.255-256
    • /
    • 2006
  • Raman spectroscopy has strong potential for providing noninvasive dermatological diagnosis of skin cancer. In this study, we investigated two classification methods with maximum a posteriori (MAP) probability and multi-layer perceptron (MLP) classification. The classification framework consists of preprocessing of Raman spectra, feature extraction, and classification. In the preprocessing step, a simple windowing method is proposed to obtain robust features. Classification results with MLP involving 216 spectra preprocessed with the proposed method gave 97.3% sensitivity, which is very promising results for automatic Basal Cell Carcinoma (BCC) detection.

  • PDF

Comparison of Classification Rate Between BP and ANFIS with FCM Clustering Method on Off-line PD Model of Stator Coil

  • Park Seong-Hee;Lim Kee-Joe;Kang Seong-Hwa;Seo Jeong-Min;Kim Young-Geun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.138-142
    • /
    • 2005
  • In this paper, we compared recognition rates between NN(neural networks) and clustering method as a scheme of off-line PD(partial discharge) diagnosis which occurs at the stator coil of traction motor. To acquire PD data, three defective models are made. PD data for classification were acquired from PD detector. And then statistical distributions are calculated to classify model discharge sources. These statistical distributions were applied as input data of two classification tools, BP(Back propagation algorithm) and ANFIS(adaptive network based fuzzy inference system) pre-processed FCM(fuzzy c-means) clustering method. So, classification rate of BP were somewhat higher than ANFIS. But other items of ANFIS were better than BP; learning time, parameter number, simplicity of algorithm.

Analysis of target classification performances of active sonar returns depending on parameter values of SVM kernel functions (SVM 커널함수의 파라미터 값에 따른 능동소나 표적신호의 식별 성능 분석)

  • Park, Jeonghyun;Hwang, Chansik;Bae, Keunsung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1083-1088
    • /
    • 2013
  • Detection and classification of undersea mines in shallow waters using active sonar returns is a difficult task due to complexity of underwater environment. Support vector machine(SVM) is a binary classifier that is well known to provide a global optimum solution. In this paper, classification experiments of sonar returns from mine-like objects and non-mine-like objects are carried out using the SVM, and classification performance is analyzed and presented with discussions depending on parameter values of SVM kernel functions.

Application of Random Forests to Assessment of Importance of Variables in Multi-sensor Data Fusion for Land-cover Classification

  • Park No-Wook;Chi kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.211-219
    • /
    • 2006
  • A random forests classifier is applied to multi-sensor data fusion for supervised land-cover classification in order to account for the importance of variable. The random forests approach is a non-parametric ensemble classifier based on CART-like trees. The distinguished feature is that the importance of variable can be estimated by randomly permuting the variable of interest in all the out-of-bag samples for each classifier. Two different multi-sensor data sets for supervised classification were used to illustrate the applicability of random forests: one with optical and polarimetric SAR data and the other with multi-temporal Radarsat-l and ENVISAT ASAR data sets. From the experimental results, the random forests approach could extract important variables or bands for land-cover discrimination and showed reasonably good performance in terms of classification accuracy.

Hierarchical CNN-Based Senary Classification of Steganographic Algorithms (계층적 CNN 기반 스테가노그래피 알고리즘의 6진 분류)

  • Kang, Sanhoon;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.4
    • /
    • pp.550-557
    • /
    • 2021
  • Image steganalysis is a technique for detecting images with steganographic algorithms applied, called stego images. With state-of-the-art CNN-based steganalysis methods, we can detect stego images with high accuracy, but it is not possible to know which steganographic algorithm is used. Identifying stego images is essential for extracting embedded data. In this paper, as the first step for extracting data from stego images, we propose a hierarchical CNN structure for senary classification of steganographic algorithms. The hierarchical CNN structure consists of multiple CNN networks which are trained to classify each steganographic algorithm and performs binary or ternary classification. Thus, it classifies multiple steganogrphic algorithms hierarchically and stepwise, rather than classifying them at the same time. In experiments of comparing with several conventional methods, including those of classifying multiple steganographic algorithms at the same time, it is verified that using the hierarchical CNN structure can greatly improve the classification accuracy.

Lidar Based Object Recognition and Classification (자율주행을 위한 라이다 기반 객체 인식 및 분류)

  • Byeon, Yerim;Park, Manbok
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.4
    • /
    • pp.23-30
    • /
    • 2020
  • Recently, self-driving research has been actively studied in various institutions. Accurate recognition is important because information about surrounding objects is needed for safe autonomous driving. This study mainly deals with the signal processing of LiDAR among sensors for object recognition. LiDAR is a sensor that is widely used for high recognition accuracy. First, we clustered and tracked objects by predicting relative position and speed of objects. The characteristic points of all objects were extracted using point cloud data of each objects through proposed algorithm. The Classification between vehicle and pedestrians is estimated using number of characteristic points and distances among characteristic points. The algorithm for classifying cars and pedestrians was implemented and verified using test vehicle equipped with LiDAR sensors. The accuracy of proposed object classification algorithm was about 97%. The classification accuracy was improved by about 13.5% compared with deep learning based algorithm.