• 제목/요약/키워드: Pareto optimization

검색결과 252건 처리시간 0.026초

Combined Economic and Emission Dispatch with Valve-point loading of Thermal Generators using Modified NSGA-II

  • Rajkumar, M.;Mahadevan, K.;Kannan, S.;Baskar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.490-498
    • /
    • 2013
  • This paper discusses the application of evolutionary multi-objective optimization algorithms namely Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Modified NSGA-II (MNSGA-II) for solving the Combined Economic Emission Dispatch (CEED) problem with valve-point loading. The valve-point loading introduce ripples in the input-output characteristics of generating units and make the CEED problem as a non-smooth optimization problem. IEEE 57-bus and IEEE 118-bus systems are taken to validate its effectiveness of NSGA-II and MNSGA-II. To compare the Pareto-front obtained using NSGA-II and MNSGA-II, reference Pareto-front is generated using multiple runs of Real Coded Genetic Algorithm (RCGA) with weighted sum of objectives. Furthermore, three different performance metrics such as convergence, diversity and Inverted Generational Distance (IGD) are calculated for evaluating the closeness of obtained Pareto-fronts. Numerical results reveal that MNSGA-II algorithm performs better than NSGA-II algorithm to solve the CEED problem effectively.

다분야 최적화에서의 근사모델 관리기법의 활용 (Managing Approximation Models in Multidisciplinary Optimization)

  • 양영순;정현승;연윤석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.141-148
    • /
    • 2000
  • In system design, it is not always possible that all decision makers can cooperate fully and thus avoid conflict. They each control a specified subset of design variables and seek to minimize their own cost functions subject to their individual constraints. However, a system management team makes every effort to coordinate multiple disciplines and overcome such noncooperative environment. Although full cooperation is difficult to achieve, noncooperation also should be avoided as possible. Our approach is to predict the results of their cooperation and generate approximate Pareto set for their multiple objectives. The Pareto set can be obtained according to the degree of one's conceding coupling variables in the other's favor. We employ approximation concept for modelling this coordination and the mutiobjective genetic algorithm for exploring the coupling variable space for obtaining an approximate Pareto set. The approximation management concept is also used for improving the accuracy of the Pareto set. The exploration for the coupling variable space is more efficient because of its smaller dimension than the design variable space. Also, our approach doesn't force the disciplines to change their own way of running analysis and synthesis tools. Since the decision making process is not sequential, the required time can be reduced comparing to the existing multidisciplinary optimization techniques. This approach is applied to some mathematical examples and structural optimization problems.

  • PDF

NSGA-II Technique for Multi-objective Generation Dispatch of Thermal Generators with Nonsmooth Fuel Cost Functions

  • Rajkumar, M.;Mahadevan, K.;Kannan, S.;Baskar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.423-432
    • /
    • 2014
  • Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is applied for solving Combined Economic Emission Dispatch (CEED) problem with valve-point loading of thermal generators. This CEED problem with valve-point loading is a nonlinear, constrained multi-objective optimization problem, with power balance and generator capacity constraints. The valve-point loading introduce ripples in the input-output characteristics of generating units and make the CEED problem as a nonsmooth optimization problem. To validate its effectiveness of NSGA-II, two benchmark test systems, IEEE 30-bus and IEEE 118-bus systems are considered. To compare the Pareto-front obtained using NSGA-II, reference Pareto-front is generated using multiple runs of Real Coded Genetic Algorithm (RCGA) with weighted sum of objectives. Comparison with other optimization techniques showed the superiority of the NSGA-II approach and confirmed its potential for solving the CEED problem. Numerical results show that NSGA-II algorithm can provide Pareto-front in a single run with good diversity and convergence. An approach based on Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) is applied on non-dominated solutions obtained to determine Best Compromise Solution (BCS).

다목적 유전자 알고리즘에 있어서 적합도 평가방법과 대화형 의사결정법의 제안 (Development of Fitness and Interactive Decision Making in Multi-Objective Optimization)

  • 윤예분;박동준;윤민
    • 산업경영시스템학회지
    • /
    • 제45권4호
    • /
    • pp.109-117
    • /
    • 2022
  • Most of real-world decision-making processes are used to optimize problems with many objectives of conflicting. Since the betterment of some objectives requires the sacrifice of other objectives, different objectives may not be optimized simultaneously. Consequently, Pareto solution can be considered as candidates of a solution with respect to a multi-objective optimization (MOP). Such problem involves two main procedures: finding Pareto solutions and choosing one solution among them. So-called multi-objective genetic algorithms have been proved to be effective for finding many Pareto solutions. In this study, we suggest a fitness evaluation method based on the achievement level up to the target value to improve the solution search performance by the multi-objective genetic algorithm. Using numerical examples and benchmark problems, we compare the proposed method, which considers the achievement level, with conventional Pareto ranking methods. Based on the comparison, it is verified that the proposed method can generate a highly convergent and diverse solution set. Most of the existing multi-objective genetic algorithms mainly focus on finding solutions, however the ultimate aim of MOP is not to find the entire set of Pareto solutions, but to choose one solution among many obtained solutions. We further propose an interactive decision-making process based on a visualized trade-off analysis that incorporates the satisfaction of the decision maker. The findings of the study will serve as a reference to build a multi-objective decision-making support system.

Implementation of Strength Pareto Evolutionary Algorithm II in the Multiobjective Burnable Poison Placement Optimization of KWU Pressurized Water Reactor

  • Gharari, Rahman;Poursalehi, Navid;Abbasi, Mohammadreza;Aghaie, Mahdi
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1126-1139
    • /
    • 2016
  • In this research, for the first time, a new optimization method, i.e., strength Pareto evolutionary algorithm II (SPEA-II), is developed for the burnable poison placement (BPP) optimization of a nuclear reactor core. In the BPP problem, an optimized placement map of fuel assemblies with burnable poison is searched for a given core loading pattern according to defined objectives. In this work, SPEA-II coupled with a nodal expansion code is used for solving the BPP problem of Kraftwerk Union AG (KWU) pressurized water reactor. Our optimization goal for the BPP is to achieve a greater multiplication factor ($K_{eff}$) for gaining possible longer operation cycles along with more flattening of fuel assembly relative power distribution, considering a safety constraint on the radial power peaking factor. For appraising the proposed methodology, the basic approach, i.e., SPEA, is also developed in order to compare obtained results. In general, results reveal the acceptance performance and high strength of SPEA, particularly its new version, i.e., SPEA-II, in achieving a semioptimized loading pattern for the BPP optimization of KWU pressurized water reactor.

Multi-objective optimization of double wishbone suspension of a kinestatic vehicle model for handling and stability improvement

  • Bagheri, Mohammad Reza;Mosayebi, Masoud;Mahdian, Asghar;Keshavarzi, Ahmad
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.633-638
    • /
    • 2018
  • One of the important problems in the vehicle design is vehicle handling and stability. Effective parameters which should be considered in the vehicle handling and stability are roll angle, camber angle and scrub radius. In this paper, a planar vehicle model is considered that two right and left suspensions are double wishbone suspension system. For a better analysis of the suspension geometry, a kinestatic model of vehicle is considered which instantaneous kinematic and statics relations are analyzed simultaneously. In this model, suspension geometry is considered completely. In order to optimum design of double wishbones suspension system, a multi-objective genetic algorithm is applied. Three important parameters of suspension including roll angle, camber angle and scrub radius are taken into account as objective functions. Coordinates of suspension hard points are design variables of optimization which optimum values of them, corresponding to each optimum point, are obtained in the optimization process. Pareto solutions for three objective functions are derived. There are important optimum points in these Pareto solutions which each point represents an optimum status in the model. In other words, corresponding to any optimal point, a specific geometric position is determined for the suspension hard points. Each of the obtained points in the Pareto optimization can be selected for a special design purpose by designer to create an optimum condition in the vehicle handling and stability.

퀼형 공작기계구조물의 다단계 최적화(1) (정강성 해석 및 다목적함수 최적화) (Multi-Phase Optimization of Quill Type Machine Structures(1) (Static Compliance Analysis & Multi-Objective Function Optimization))

  • 이영우;성활경
    • 한국정밀공학회지
    • /
    • 제18권11호
    • /
    • pp.155-160
    • /
    • 2001
  • To achieve high precision cutting as well as production capability in the machine tool, it is needed to develop excellent rigidity statically, dynamically and thermally as well. In order to predict the qualitative behavior of a machine tool, simultaneous analysis of mechanics and heat transfer is required. Generally, machine tool designers have solved designing problems based on partial estimation of the specified rigidity. This study clears the inter-relationship between therm, and propose multi-phase optimization of machine tool structure using a genetic algorithm. The multi-phase solution method is consists of a series of mechanical design problem. At this first phase of static design problem, multi-objective optimization for the purpose of minimization of the total weight and static compliance minimization is solved using the Pareto Genetic Algorithm.

  • PDF

다중모드 Cognitive Radio 통신 시스템을 위한 GBNSGA 최적화 알고리즘 (GBNSGA Optimization Algorithm for Multi-mode Cognitive Radio Communication Systems)

  • 박준수;박순규;김진업;김형중;이원철
    • 한국통신학회논문지
    • /
    • 제32권3C호
    • /
    • pp.314-322
    • /
    • 2007
  • 본 논문에서는 CR(Cognitive Radio)을 위해 사용자에게 최적의 통신 시스템 구성 변수들을 할당하기 위한 새로운 최적화 알고리즘인 GBNSGA(Goal-Pareto Based Non-dominated Sorting Genetic Algorithm)를 제안한다. 다중모드 선택적 CR 통신을 위해 사용되는 cognitive 엔진은 Mitola가 제안한 cognition 싸이클의 많은 논리 연산과정이 필요하다는 단점을 보완하기 위하여 일반적으로 유전자 알고리즘 기반의 접근 방식이 사용되고 있다. 본 논문에서는 cognitive 엔진의 효율적인 구동을 위하여 파레토(Pareto) 기반의 최적화 알고리즘인 NSGA(Non-dominated Sorting Genetic Algorithm)와 사용자 서비스의 요구사항을 goal로 설정하는 GP(Goal Programming)을 결합한 새로운 최적화 방법으로 GBNSGA를 제안하였으며, 시뮬레이션 수행을 통해 제안된 알고리즘이 요구사항에 적합한 다양한 해를 제공하고 최적화 수렴속도가 빠르다는 것을 확인하였다.

다단계 최적화 수법을 이용한 열원 설비 설계법에 관한 연구 (A Study on the Multi-level Optimization Method for Heat Source System Design)

  • 유민경;남유진
    • 설비공학논문집
    • /
    • 제28권7호
    • /
    • pp.299-304
    • /
    • 2016
  • In recent years, heat source systems which have a principal effect on the performance of buildings are difficult to design optimally as a great number of design factors and constraints in large and complicated buildings need to be considered. On the other hand, it is necessary to design an optimum system combination and operation planning for energy efficiency considering Life Cycle Cost (LCC). This study suggests a multi-level and multi-objective optimization method to minimize both LCC and investment cost using a genetic algorithm targeting an office building which requires a large cooling load. The optimum method uses a two stage process to derive the system combination and the operation schedule by utilizing the input data of cooling and heating load profile and system performance characteristics calculated by dynamic energy simulation. The results were assessed by Pareto analysis and a number of Pareto optimal solutions were determined. Moreover, it was confirmed that the derived operation schedule was useful for operating the heat source systems efficiently against the building energy requirements. Consequently, the proposed optimization method is determined by a valid way if the design process is difficult to optimize.

프로젝트 일정과 자원 평준화를 포함한 다목적 최적화 문제에서 순차적 자원 감소에 기반한 파레토 집합의 생성 (Generation of Pareto Sets based on Resource Reduction for Multi-Objective Problems Involving Project Scheduling and Resource Leveling)

  • 정우진;박성철;임동순
    • 산업경영시스템학회지
    • /
    • 제43권2호
    • /
    • pp.79-86
    • /
    • 2020
  • To make a satisfactory decision regarding project scheduling, a trade-off between the resource-related cost and project duration must be considered. A beneficial method for decision makers is to provide a number of alternative schedules of diverse project duration with minimum resource cost. In view of optimization, the alternative schedules are Pareto sets under multi-objective of project duration and resource cost. Assuming that resource cost is closely related to resource leveling, a heuristic algorithm for resource capacity reduction (HRCR) is developed in this study in order to generate the Pareto sets efficiently. The heuristic is based on the fact that resource leveling can be improved by systematically reducing the resource capacity. Once the reduced resource capacity is given, a schedule with minimum project duration can be obtained by solving a resource-constrained project scheduling problem. In HRCR, VNS (Variable Neighborhood Search) is implemented to solve the resource-constrained project scheduling problem. Extensive experiments to evaluate the HRCR performance are accomplished with standard benchmarking data sets, PSPLIB. Considering 5 resource leveling objective functions, it is shown that HRCR outperforms well-known multi-objective optimization algorithm, SPEA2 (Strength Pareto Evolutionary Algorithm-2), in generating dominant Pareto sets. The number of approximate Pareto optimal also can be extended by modifying weight parameter to reduce resource capacity in HRCR.