• Title/Summary/Keyword: Parent metal

Search Result 94, Processing Time 0.026 seconds

A Research on Evaluation Methods of Testing Impact of the Strength of Soldering (납착강도 충격시험 평가법에 관한 연구)

  • Kim, Sa-Hak
    • Journal of Technologic Dentistry
    • /
    • v.21 no.1
    • /
    • pp.55-65
    • /
    • 1999
  • So far, I Conducted an examination with focus on the type, characteristic, and test methods of impact test. which is a type of mechanical that evaluate materials. As mentioned previously, in testing soldering strength of soldering is the load when the object under experiment is broken down with the result of flexibility test or peel test. In this method, a hevay load is necessary until alloy of parent metal is bended, if the alloy of the parent metal has a large mechanical quality(peel strength or resisting power). Once the alloy of the parent metal is bended, however, it tends to come into pieces abruply form the part where soldered. Therefore, a metal has a high breakdown value if the degree of strength of its parent metal is high even if the result of measurement indicates otherwise. Thus, the result of the test did not correspond to the clinical result. Therefore, this study concludes as the following from a test of strength of soldering by mean of conducting an impact test, which is a type of mechanical evaluation methods : 1. Among various impact tests, a charpy thpe is more appropriate than the izod type in testing strength of soldering. 2. As far as test piece is concerned, to use subsized impact test piece is appropriate in the impact test in that it does not have notch. 3. In the matter of analysis, it is appropriate to measure absorbing energy which results from rupture of test piece.

  • PDF

A Study on The Strength Evaluation of welded Joints for Degraded Material (열화재 용접부의 강도평가에 관한 연구)

  • 정의정;윤한용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.705-710
    • /
    • 2002
  • Welding is used not only during the shipbuilding, but also during the repairing of ships. While repairing of ships, it is inevitable to weld new materials with degraded materials. In this case, it is predicted that the strength of both the sections is not identical each other. In this study, the respective welded joints in terms of mechanical properties such as microstructure, mechanical strength and fatigue crack propagation, with the component obtained from the barge used for a long-term period, were analyzed. It was found that the material degradation had a significant effect on the welded joints. The fatigue crack propagation in welded sections showed a big difference. The rate of fatigue crack growth of degraded material for both heat affected zone and parent metal was faster than that of new material. By contrast, The result within identical materials showed that the heat-affected zone was slower than that of parent metal

  • PDF

A Study on the Strength Evaluation of Welded Joints for Degraded Material (열화재 용접부의 강도평가에 관한 연구)

  • 정의정;윤한용;임명환;김태식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.75-82
    • /
    • 2002
  • Welding is used not only for the shipbuilding, but also for the repairing of ships. While repairing of ships, it is inevitable to weld new materials with degraded materials. In this case, it is predicted that the strength of both the sections is not identical each other. In this study, the respective welded joints in terms of mechanical properties such as microstructure, mechanical strength and fatigue crack propagation, with the component obtained from the barge used for a long-term period, were analyzed. It was found that the material degradation had a significant effect on the welded joints. The fatigue crack propagation in welded sections showed a big difference. The rate of fatigue crack growth of degraded material for both heat affected zone and parent metal was faster than that of new material. By contrast, the result from identical materials showed that the rate of fatigue crack growth of the heat-affected zone was slower than that of parent metal.

An Experimental Study on High Temperature Material Properties of Welded Joint (용접부의 고온 재료물성에 대한 실험적 연구)

  • Baek, Un-Bong;Yun, Gi-Bong;Seo, Chang-Min;Lee, Hae-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3096-3103
    • /
    • 2000
  • High temperature material properties of a welded joint were experimentally studied. Tensile and creep properties were measured for each part of weld metal. HAZ(heat affected zone) and parent metal at 538$^{\circ}C$. HAZ metal was obtained by a simulated heat treatment. Results showed that the order of tensile strength is weld>HAZ> parent both at 24$^{\circ}C$ and at 538$^{\circ}C$. Creep resistance was also the highest for weld metal and lowest for parent metal. Creep rupture life curves were obtained and converted to Monkman-Grant relation which is useful for life assessment. Use of the data obtained in this study is discussed.

A Study on the Stress Corrosion Cracking Behaviors for Weld Joint of Steel with Various pH Values in Synthetic Sea Water (인공해수의 pH에 따른 강 용접부의 응력 부식균열거동에 관한 연구)

  • 유효선;나의균;정세희
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.78-88
    • /
    • 1995
  • This paper was performed to study the utility of the SP(small punch) test and the AE(acoustic emission) test in the evaluation of SCC(stress corrosion cracking) susceptibility for parent metal and bond line of HT80 steel-weld joint by SAW(submerged arc welding) with the various pH values. The loading rate used was 3*10$^{-4}$ mm/min and the corrosive environment used was synthetic sea water during the SP test and the AE test. According to the test results, the SCC susceptibility of the parent metal was increased in the order of pH6.0, pH8.2 and pH10.0. On the other hand, the bond line showed almost the same high SCC susceptibility in all pH concentrations. Synthetically, from the results of the SCC susceptibility, the macro- and micro-SEM observation, the microfracture behaviors by AE test and the relationship between SCC susceptibility and displacement at incipient failure, .delta.$_{i.f-AE}$, it can be concluded that the SP test and the AE test are the good test methods to evaluate the SCC susceptibility for parent metal and bond line of the weld joint with the change of environmental factors.

  • PDF

A Study the Behavior of Plastic Deformation in Weld HAZ of Mild Steel (軟鋼 熔接熱影響部의 塑性變形擧動에 關한 硏究 II)

  • 박창언;정세희
    • Journal of Welding and Joining
    • /
    • v.10 no.1
    • /
    • pp.43-51
    • /
    • 1992
  • The plastic zone formed around a notch tip is important in analyzing the fracture toughness of structures and particularly weld cracks existed in the weld HAZ (heat affected zone) which produces local plastic deformation at the crack tip. Therefore, in order to analyze the fracture toughness in weld HAZ, it is necessary to investigate the new fracture toughness parameter $K_{c}$ $^{*}$ and critical plastic strain energy $W_{p}$ $^{c}$ according to the shape and size of the plastic zone. 1) If the temperature corresponding to $K_{c}$ $^{*}$=130kg-m $m^{-3}$ 2/ is determined, transition temperature $T_{tr}$ the magnitude of plastic zone size, and heat input change depending on the fracture toughness. The blunted amounts of the parent and weld HAZ show mild linear variation until .delta.=0.4mm and then increase very steeply there after. 2) The relation between the plastic strain energy( $W^{p}$ ) and transition temperature( $T_{*}$tr) in parent metal is more sensitive than that of weld HAZ. However, the plastic strain energy depends on the transition temperature, and thus the yield stress, .sigma.$_{ys}$ becomes an important parameter for plastic strain energy. 3) The critical plastic strain energy( $W_{p}$ $^{c}$ ) absorbed by the plastic zone at the notch tip indicated in case of parent metal: 60J/mm, in case of heat input(20KJ/cm): 75J/mm, in case of heat input(30KJ/cm); 50J/mmJ/mm.

  • PDF

Influence of Heat Treatment on Transformation Characteristics in an Unidirectionally Solidified Cu-Al-Ni Alloy (일방향 응고된 Cu-Al-Ni 합금의 변태특성에 미치는 열처리 영향)

  • Park, Y.K.;Jang, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.2
    • /
    • pp.90-96
    • /
    • 2003
  • The effect of betatizing temperature on microstructure and transformation characteristics in a Cu-AI-Ni based pseudoelastic alloy fabricated by heated mold continuous casting by using metallography, XRD and calorimetry. The microstructure of cast rod betatized at $600^{\circ}C$ revealed a ${\beta}_1$ parent phase and a ${\gamma}_2$ phase precipitated along the casting direction. When the cast rod was betatized at the elevated temperature above $600^{\circ}C$, the ${\gamma}_2$ phase is completely dissolved into the matrix so that the volume fraction of the ${\gamma}_2$ phase was decreased. The parent phase was stabilized by betatizing at $600^{\circ}C$. However, the ${\beta}_1$ parent phase was transformed to both ${{\beta}_1}^{\prime}$ and ${{\gamma}_1}^{\prime}$ martensites with increasing betatizing temperatures above $600^{\circ}C$, while $M_s$ and $A_s$ temperatures were decreased. The stress-strain curves for compression test were not same with betatizing temperature; the stress-strain curves of the specimen betatized at $600^{\circ}C$ and $700^{\circ}C$ were linear but those of the specimen betatized at $800^{\circ}C$ and $900^{\circ}C$ were not linear.

Shear Bonding Strength by the Characteristic of Metal Oxidation on the Surface of Ni-Cr Alloy for Porcelain Fused Metal Crown (금속-도재관용 Ni-Cr 합금의 표면산화물특성에 따른 전단결합강도 관찰)

  • Chung, In-Sung;Kim, Chi-Young
    • Journal of Technologic Dentistry
    • /
    • v.35 no.4
    • /
    • pp.359-364
    • /
    • 2013
  • Purpose: This study was to observe characteristic of metal oxidation and bonding strength according to composition of Ni-Cr alloy for porcelain fused to metal crown. The three kinds of Ni-Cr alloy with different composition ratio of parent metal were observed general properties and chemical properties of each alloy surface and measured the shear bonding strength between ceramic and each alloys. The aim of study was to suggest the material for design of parent metal's composition ratio to development of alloy for porcelain fused to metal crown. Methods: The three kinds of alloy as test specimen was Ni(59wt%)-Cr(24wt%), Ni(67wt.%)-Cr(16wt.%) alloy and Ni(71wt%)-Cr(12wt%)alloy. The oxide on surface was observed by EDX. And the shear test was performed by MTS. Results: The surface property and oxide characteristic analysis of oxide layer, weight percentage of Element O within $Ni_{59}Cr_{24}$ alloy measured 23.03wt%, $Ni_{67}Cr_{16}$ alloy measured 21.13wt% and $Ni_{71}Cr_{12}$ alloy was measured 48.55wt%. And the maximum shear bonding strength was measured 58.02Mpa between $Ni_{59}Cr_{24}$ alloy and vintage halo(H2 group). Conclusion: The surface property and oxide characteristic three kind of Ni-Cr alloy was similar. and shear bonding strength showed the highest bonding strength in H2 specimens.

High Temperature Crack Growth Behavior at Heat Affected Zone (용접열영향부 균열의 고온에서의 성장거동)

  • 백운봉;윤기봉
    • Proceedings of the KWS Conference
    • /
    • 2001.05a
    • /
    • pp.104-107
    • /
    • 2001
  • Creep-fatigue crack growth behavior at the heat affected zone of 1Cr-0.5Mo steel weldment has been experimentally studied. Load hold times of the tests for trapezoidal fatigue wave-shapes were varied among 0, 30, 300 and 3,600 seconds. Time-dependent crack growth rates were characterized by the $C_{t}$ estimated with the equation proposed by the previous finite element analysis work. It was concluded that the $C_{t}$ values calculated from the properties of parent metal were quite comparable to the accurate $C_{t}$ values calculated from both of weld and parent metals.etals.

  • PDF

Monitoring the Welding Gap/Profile with Visual Sensor (시각센서를 이용한 용접 Gap/Profile 모니터링)

  • Kim, Chang-Hyeon;Choe, Tae-Yong;Lee, Ju-Jang;Seo, Jeong;Park, Gyeong-Taek;Gang, Hui-Sin
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2005.06a
    • /
    • pp.3-8
    • /
    • 2005
  • The robot systems are widely used in the welding manufacturing. The essential tasks to operate the welding robot are the acquisition of the position and/or shape of the parent metal. For the seam tracking or the robot automation, many kinds of contact and non-contact of the system which monitors the shape of the welding part is described. This system uses the line-type structured laser diode and the visual sensor. It includes the correction of radial distortion which is often found in the image from the camera with short focal length. Direct Linear Transformation (DLT) is used for the camera calibration. The three dimensional shape of the parent metal is obtained after simple linear transformation. Therefore, the system operates in real time. Some experiments are carried out to evaluate the performance of the developed system.

  • PDF