• Title/Summary/Keyword: Parasitic Patch

Search Result 69, Processing Time 0.027 seconds

Stacked Slot Patch Antenna for Wireless Sensors Embedded in Concrete (콘크리트 매립 센서를 위한 이중 슬롯 패치 안테나)

  • Lee, Jae-Hyuk;Lee, Sung-Ho;Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.12
    • /
    • pp.915-923
    • /
    • 2018
  • A concrete embedded antenna design is proposed for probing the durability of a building at an industrial scientific medical band of 902~908 MHz. The proposed antenna is designed with a stacked slot patch structure for lower impedance variation to a dielectric constant of concrete, as a dielectric constant difference is derived from the moisture content. The proposed structure has a wider bandwidth when a parasitic patch structure is used, which reduces antenna performance degradation resulting from the moisture content of concrete. The measured voltage standing wave ratio of the proposed structure is less than 2 and the beam width is approximately $80^{\circ}$, whereas the gain is greater than 7 dBi. The proposed antenna is fabricated with a rectangle-type concrete block, which is simulated and measured for return loss and antenna gain.

Design of beam tilting microstrip patch array antenna using H-plane coupling (H-면 결합을 이용한 빔 틸팅 마이크로스트립 패치 배열 안테나 설계)

  • 하재권;최성수;박동철
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.293-296
    • /
    • 2002
  • In this paper, we proposed a beam tilting microstrip patch array antenna for the reception of satellite signals by using low cost copper etched polyester films and foams. The configuration and coupling mechanism of the proposed antenna are similar to the dipole Yagi-Uda antenna. It is composed of 3 layers of polyester films and three layers of foam. In order to prevent unwanted radiation and coupling loss by microstrip feeding networks and parasitic patches, a stacked layer with rectangular slots above the driver patch array is inserted. The 16${\times}$8 element microstrip Patch way antenna is Presented by experimental results. Its beam patterns are affected by many parameters such as sizes of the patches, gap between the patches. characteristics of the substrates, feeding method, etc. Owing to its complexities of various design parameters, both simulation and experiment were performed. The fabricated antenna received DBS signal from KOREASAT 3 by doing nothing but adjusting azimuth direction.

  • PDF

A Broad-band Microstrip Patch Antenna for B-WLL System Applications (B-WLL용 광대역 마이크로스트립 안테나)

  • 오창열;서청호;오순수;윤미경;김웅배;김영식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.58-64
    • /
    • 2001
  • A microstrip patch antenna with B-WLL applications is designed and manufactured. To make a array antenna the size of patch antenna was miniaturized. A broad band is obtained by two additional parasitic elements, which are closely located to the main patch. The bandwidth of the manufactured antenna is 15% at the center frequency of 26.8 GHz. Radiation patterns are measured over a wide bandwidth.

  • PDF

Design and Implementation of UWB Antenna with Dual Band Rejection Characteristics (이중 대역저지 특성을 가지는 UWB 안테나 설계 및 구현)

  • Yang, Woon Geun;Nam, Tae Hyeon
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.413-419
    • /
    • 2018
  • An UWB(Ultra Wide Band) antenna with band rejection characteristics is designed and implemented. A planar radiation patch with slot, parasitic elements on both sides of strip and ground plane on back side consist the proposed antenna. The slot in the radiation patch and parasitic elements contribute corresponding bands rejection characteristics. The slot contributes for WiMAX(World interoperability for Microwave Access, 3.30~3.70 GHz) band rejection and parasitic elements contribute for X-Band(7.25~8.395 GHz) rejection. Ansoft's HFSS(High Frequency Structure Simulator) was used to design the proposed antenna and performance simulations. Simulation result showed VSWR(Voltage Standing Wave Ratio) less than 2.0 for UWB band except for dual rejection bands of 3.30~3.86 GHz and 7.21~8.39 GHz. And VSWR measurement result for the implemented antenna shows less than 2.0 for 3.10~10.60 GHz band except dual rejection bands of 3.25~3.71 GHz and 7.25~8.46 GHz.

Design Optimization of an Enhanced Stop-band UWB Bow-Tie Antenna

  • Choi, Kyung;Kim, Hyeong-Seok;Hwang, Hee-Yong
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.793-799
    • /
    • 2018
  • An improved design of Ultra Wide Band(UWB) Bow-Tie antenna, which can control an enhanced wide stop-band, is presented. The mutually coupled slot-pair improves and controls the rejection band. The UWB antenna is composed of an electromagnetically coupled Bow-Tie patch and a parasitic ground patch, whose working frequency is extended to full UWB range in this work. By adding slot-pairs on the main patch and optimizing, they can give any requested wide rejection bands and sharp skirt characteristics, as is often required for UWB antennas and multi-band antennas. All the parameters are precisely calculated by an adequate optimization method. The Particle Swarm Optimization(PSO) technique is appropriately adopted. The proposed design and method is proved to give and control the sharp-skirt wide stop-band to UWB Bow-Tie antennas.

Adaptive Adjustment of Radiation Properties for Entire Range of Axial Ratio using a Parasitic Microstrip Polarizer

  • Yoo, Sungjun;Lee, Dongeun;Byun, Gangil;Choo, Hosung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1250-1256
    • /
    • 2017
  • This paper proposes the design of microstrip patch antennas for dual-band polarization adjustment. The antenna has a multi-layer structure for dual-band operation, and each layer contains a resonating patch with surrounding strips separated into two parts. The antenna polarization is adjusted by varying the separated positions of the strips, while fixing other design parameters. To demonstrate the feasibility, an antenna sample with right-hand circular polarization is fabricated, and its antenna characteristics are measured in a full anechoic chamber. The operating principle of polarization adjustment in the dual frequency bands is also verified by observing near electromagnetic fields and the magnetic surface current density around the antenna.

Analysis of the Rectangular Microstrip Antenna with Parasitic Elements Considering the Mutual Coupling Characteristics (상호결합 특성이 고려된 기생소자를 갖는 구형 마이크로스트립 안테나 해석)

  • Son, Geon-Ho;Yun, Li-Ho;Hong, Jae-Pyo;Cho, Young-Ki;Son, Hyon
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.12
    • /
    • pp.12-17
    • /
    • 1991
  • In this paper, E-plane gap-coupled rectangular microstrip antennas with parasitic elements are analyzed. The mutual coupling between the radiating edges is represented as the voltage-dependent current source. The gap coupling between the patch and parasitic element is characterized with the REC(Radiating Edges-Coupling) model, and the conventional transmission line model is used to obtain the equivalent circuit of the antenna. The return loss of the rectangular microstrip antennas with short-and open-circuit parasitic elements are calculated and compared with the measured values. The theoretical values including the mutual coupling are more in agreement with the measured values than the calculated values without the mutual coupling.

  • PDF

Design of Wide Band Antennas for Mobile Communications (이동통신용 광대역 패치 안테나 설계)

  • Kim, Jang-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.3
    • /
    • pp.27-34
    • /
    • 2013
  • A wideband patch antenna fed by an L-strip feeder is studied. The objective of this paper is to design small wideband antenna for 3G and 4G wireless mobile communication service. The enhanced features were confirmed and proved by comparing the proposed antenna with the antennae that have been reported in the relevant literatures. Measurement results confirm that an impedance bandwidth($VSWR{\leq}2$) of 636MHz(32.5%, fo=1,960MHz) is achieved at 3G and 4G frequency band for L-strip-fed triangular patch antenna. In general, probe feed has only the parasitic reactance caused by the probe, which reduces the bandwidth performance of the antenna. The experimental results proved that the effects of improvement could be achieved because the proposed antenna is capable of compensating the parasitic reactance from the feeding mechanism. The studied antenna can be designed easily for extension of array because it has simple structure.

High Gain and Broadband SAP Antenna with Two Parasitic Patches (두 개의 기생 패치를 갖는 고 이득.광대역 SAP 안테나)

  • Kim, Jung-Han;Kim, Yong-Jin;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.930-936
    • /
    • 2007
  • In this paper, the high gain and broadband antenna operating for SDMB(Satellite Digital Multimedia Broadcasting) system is realized, The proposed antenna consists of the SAP(Shorted Annular Patch) structure, which inhibits surface-wave and the parasitic SAP element with spacing of $0.25 {\lambda}_0$ in order to improve gain, bandwidth and directivity. The RHCP(Right Hand Circular Polarization) is generated by two slits, which are made along the periphery of the circular patch at the diametrically opposite points, The simulated maximum gain of the proposed antenna is 12.6 dBi, which is better 5.22 dBi than maximum gain of the conventional microstrip patch antenna. The measured maximum gain is 10.5dBi at operating frequency 2.63GHz. Also, the measured impedance bandwidth$(VSWR{\leq}2)$ of the proposed antenna is $360MHz(2.488{\sim}2.848 GHz)$, which is better 300 MHz than the bandwidth of the conventional microstrip patch antenna. The measured HPBW(Half Power Beam Width) of the proposed antenna is $45.8^{\circ}$, and the measured FBR(Front to Back Ratio) is 15.49 dBi, The 3dB axial ratio bandwidth is 220 MHz$(2.54{\sim}2.76 GHz)$.

The Design and Fabrication for Wireless Repeater Patch Antenna of Wide-band Dual polarization (광대역 이중편파 무선 중계기용 패치안테나 설계 및 제작)

  • Lee, Han-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1287-1292
    • /
    • 2012
  • In this paper, a dual polarization patch antenna operates at the wide bandwidth of 1.525GHz~1.665GHz was designed and fabricated. To obtain the wide bandwidth and high gain, increased height of air floor from GND was applied, and to get wide band axial ratio and high gain, parasitic patch was applied. The simulation and measurement showed good agreements, the VSWR was less than 1.9 at the frequency bandwidth, the return loss was less than -10dB, and the LHCP(Left Hand Circular Polarization) and RHCP(Right Hand Circular Polarization) isolation was less than -13dB at the frequency bandwidth.