• Title/Summary/Keyword: Parametric-based system

Search Result 625, Processing Time 0.047 seconds

Experimental and finite element parametric investigations of the thermal behavior of CBGB

  • Numan, Hesham A.;Taysi, Nildim;Ozakca, Mustafa
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.813-832
    • /
    • 2016
  • This research deals with the behavior of Composite Box Girder Bridges (CBGBs) subjected to environmental effects such as solar radiation, atmospheric temperature, and wind speed. It is based on temperature and thermal stress results, which were recorded hourly from a full-scale experimental CBGB segment and Finite Element (FE) thermal analysis. The Hemi-cube method was adopted to achieve the accuracy in temperature distributions and variations in a composition system during the daily environmental variations. Analytical findings were compared with the experimental measurements, and a good agreement was found. On the other hand, parametric investigations are carried out to investigate the effect of the cross-section geometry and orientation of the longitudinal axis of CBGB on the thermal response and stress distributions. Based upon individual parametric investigations, some remarks related to the thermal loading parameters were submitted. Additionally, some observations about the CBGB configurations were identified, which must be taken into account in the design process. Finally, this research indicates that the design temperature distribution with a uniform differential between the concrete slab and the steel girder is inappropriate for describing the thermal impacts in design objective.

Parametric resonance of a spinning graphene-based composite shaft considering the gyroscopic effect

  • Neda Asadi;Hadi Arvin;Yaghoub Tadi Beni;Krzysztof Kamil Zur
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.457-471
    • /
    • 2024
  • In this research, for the first time the instability boundaries for a spinning shaft reinforced with graphene nanoplatelets undergone the principle parametric resonance are determined and examined taking into account the gyroscopic effect. In this respect, the extracted equations of motion in our previous research (Ref. Asadi et al. (2023)) are implemented and efficiently upgraded. In the upgraded discretized equations the effect of the Rayleigh's damping and the varying spinning speed is included that leads to a different dynamical discretized governing equations. The previous research was about the free vibration analysis of spinning graphene-based shafts examined by an eigen-value problem analysis; while, in the current research an advanced mechanical analysis is addressed in details for the first time that is the dynamics instability of the aforementioned shaft subjected to the principal parametric resonance. The spinning speed of the shaft is considered to be varied harmonically as a function of time. Rayleigh's damping effect is applied to the governing equations in order to regard the energy loss of the system. Resorting to Bolotin's route, Floquet theory and β-Newmark method, the instability region and its accompanied boundaries are defined. Accordingly, the effects of the graphene nanoplatelet on the instability region are elucidated.

OpenBIM-based Mapping System Development for Geometry Information Exchange of Architectural Components (건축부재 형상정보 교환을 위한 개방형BIM 기반의 매핑 시스템 개발)

  • Park, Seunghwa;Kim, Inhan;Lee, Jiah
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.182-190
    • /
    • 2014
  • Parametric modeling is one of BIM's characteristics and BIM have being utilized for constructability analysis, energy efficiency analysis, and so on in diverse construction field. However, parametric information's interoperation is not solved until now because different BIM tools have specific algorithm and methods to generate geometric information. To solve the problem, previous research suggested IFC-XML methodology. In this paper, authors studied connections between IFC-XML structure and script-based modeling commends to make libraries in commercial BIM tools such as ArchiCAD$^{TM}$ and Digital Project$^{TM}$. In addition, they made commends mapping tables to exchange geometry information of architectural components. Moreover, mapping system was developed to certify the mapping tables which is classified modeling commends. Finally, translated architectural component model was confirmed using exchanged geometry information in browser.

A Model for Production Planning in a Multi-item Production System -Multi-item Parametric Decision Rule- (다품목(多品目) 생산체제(生産體制)의 생산계획(生産計劃)을 위한 모델)

  • Choe, Byeong-Gyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.1 no.2
    • /
    • pp.27-38
    • /
    • 1975
  • This paper explores a quantitative decision-making system for planning production, inventories and work-force in a multi-item production system. The Multi-item Parametric Decision Rule (MPDR) model, which assumes the existence of two types of linear feed-back rules, one for work-force level and one for production rates, is basically an extension of the existing method of Parametric Production Planning (PPP) proposed by C.H. Jones. The MPDR model, however, explicitly considers the effect of manufacturing progress and other factors such as employee turn-over, difference in work-days between month etc., and it also provides decision rules for production rates of individual items. First, the cost relations of the production system are estimated in terms of mathematical functions, and then decision rules for work-force level and production rates of individual items are establised based upon the estimated objective cost function. Finally, a direct search technique is used to find a set of parameters which minimizes the total cost of the objective function over a specified planning horizon, given estimates of future demands and initial values of inventories and work-force level. As a case problem, a hypothetical decision rule is developed for a particular firm (truck assembly factory).

  • PDF

Real-time Water Quality Monitoring System Using Vision Camera and Multiple Objects Tracking Method (비젼 카메라와 다중 객체 추적 방법을 이용한 실시간 수질 감시 시스템)

  • Yang, Won-Keun;Lee, Jung-Ho;Cho, Ik-Hwan;Jin, Ju-Kyong;Jeong, Dong-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.401-410
    • /
    • 2007
  • In this paper, we propose water quality monitoring system using vision camera and multiple objects tracking method. The proposed system analyzes object individually using vision camera unlike monitoring system using sensor method. The system using vision camera consists of individual object segmentation part and objects tracking part based on interrelation between successive frames. For real-time processing, we make background image using non-parametric estimation and extract objects using background image. If we use non-parametric estimation, objects extraction method can reduce large amount of computation complexity, as well as extract objects more effectively. Multiple objects tracking method predicts next motion using moving direction, velocity and acceleration of individual object then carries out tracking based on the predicted motion. And we apply exception handling algorithms to improve tracking performance. From experiment results under various conditions, it shows that the proposed system can be available for real-time water quality monitoring system since it has very short processing time and correct multiple objects tracking.

On Feedback Linearization of Nonlinear Time-Delay Systems

  • Shin, Hee-Sub;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1906-1908
    • /
    • 2004
  • We propose a result on the stabilization of nonlinear time-delay systems via the feedback linearization method. Using the predictor based control and the parametric coordinate transformation, we introduce a stabilizing controller to compensate time delay. Specifically, we present the delay-dependent stability analysis to makes the considered system stable. Also, an illustrative example is provided

  • PDF

Integrated Design System to perform Fatigue Durability Analysis of Automobile Suspension Module (자동차 서스펜션 모듈 피로내구해석을 위한 통합설계시스템 개발)

  • Han, Seung-Ho;Lee, Jai-Kyung;Lee, Tae-Hee;Jang, Kwang-Sub;Kwon, Tae-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1652-1657
    • /
    • 2007
  • Designer must cope with frequent changes in geometric information of automobile suspension module in the early stage of the design process. The authors developed the PSG(Parametric Set Generator) to create parametric models and to change geometric information concerning the lower arm, which is one of the important parts of the automobile suspension module. CAD models provided from the PSG can be utilized to assess fatigue durability via the FE modeling support system. This system provides easy and fast FE-modeling for a static and durability analysis of the lower arm. The PSG and the FE modeling support system are integrated using the e-engineering framework based on the JADE platform. In this study, a durability analysis as a case study for the lower arm manufactured at H company is performed, and the efficiency obtained is discussed.

  • PDF

A Design of $H_{\infty}$ Controller for the Stabilization of A.C. -D.C. Power Systems (교류-직류 계통의 안정화를 위한 $H_{\infty}$제어기 설계)

  • Han, G.M.;Lee, J.P.;Chung, H.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.224-226
    • /
    • 2000
  • In this paper, a robust $H_{\infty}$ controller, based on the Riccati equation approach, is proposed for HVDC power system with parametric uncertainties. Bounds of power system parametric uncertainties are included in Riccati equation to improve the robustness of controller. The proposed $H_{\infty}$ controller for the stabilization of HVDC power system can ensure that the overall system is asymptotically stable for all admissible uncertainties. Simulation results show that the proposed $H_{\infty}$ controller can achieve good performance in presence of uncertainties of power system.

  • PDF

Robust Digital Fuzzy Controller Design for Load-Frequency Control of Nonlinear Power System (비선형 전력계통 시스템의 부하주파수 제어를 위한 강인한 디지탈 퍼지 제어기의 설계)

  • Jeon, Sang-Won;Joo, Young-Hoon;Lee, Ho-Jae;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.110-112
    • /
    • 2000
  • A new robust digital fuzzy controller design methodology is proposed for load frequency of nonlinear power system with valve position limits of governor in the presence of parametric uncertainties. The Takagi-Sugeno (TS) fuzzy model is adopted for fuzzy modeling of the nonlinear power system. A sufficient condition of robust stability for robust fuzzy control with parametric uncertainties is presented in the sense of Lyapunov. The controller that designed by preposed robust fuzzy controller design method is based compounding condition between continues system and discrete system. The effectiveness of controller that designed by the proposed robust fuzzy controller design method is demonstrated through simulation example.

  • PDF

Semi-active bounded optimal control of uncertain nonlinear coupling vehicle system with rotatable inclined supports and MR damper under random road excitation

  • Ying, Z.G.;Yan, G.F.;Ni, Y.Q.
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.707-729
    • /
    • 2018
  • The semi-active optimal vibration control of nonlinear torsion-bar suspension vehicle systems under random road excitations is an important research subject, and the boundedness of MR dampers and the uncertainty of vehicle systems are necessary to consider. In this paper, the differential equations of motion of the coupling torsion-bar suspension vehicle system with MR damper under random road excitation are derived and then transformed into strongly nonlinear stochastic coupling vibration equations. The dynamical programming equation is derived based on the stochastic dynamical programming principle firstly for the nonlinear stochastic system. The semi-active bounded parametric optimal control law is determined by the programming equation and MR damper dynamics. Then for the uncertain nonlinear stochastic system, the minimax dynamical programming equation is derived based on the minimax stochastic dynamical programming principle. The worst-case disturbances and corresponding semi-active bounded parametric optimal control are obtained from the programming equation under the bounded disturbance constraints and MR damper dynamics. The control strategy for the nonlinear stochastic vibration of the uncertain torsion-bar suspension vehicle system is developed. The good effectiveness of the proposed control is illustrated with numerical results. The control performances for the vehicle system with different bounds of MR damper under different vehicle speeds and random road excitations are discussed.