• Title/Summary/Keyword: Parametric variations

Search Result 198, Processing Time 0.02 seconds

Vibration and stability of composite cylindrical shells containing a FG layer subjected to various loads

  • Sofiyev, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.3
    • /
    • pp.365-391
    • /
    • 2007
  • The vibration and stability analysis is investigated for composite cylindrical shells that composed of ceramic, FGM, and metal layers subjected to various loads. Material properties of FG layer are varied continuously in thickness direction according to a simple power distribution in terms of the ceramic and metal volume fractions. The modified Donnell type stability and compatibility equations are obtained. Applying Galerkin's method analytic solutions are obtained for the critical parameters. The detailed parametric studies are carried out to study the influences of thickness variations of the FG layer, radius-to-thickness ratio, lengths-to-radius ratio, material composition and material profile index on the critical parameters of three-layered cylindrical shells. Comparing results with those in the literature validates the present analysis.

A Study on the Aerodynamic Characteristics of a Joined-wing Aircraft with Variation of Wing Configurations

  • Kidong Kim;Jisung Jang
    • International Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • The present study was attempted to investigate flow interference effects and the aerodynamic characteristics of the front and rear wings of a joined-wing aircraft by changing the configuration variables. The study was performed using a computational fluid dynamics(CFD) tool to demonstrate forward flight and analyze aerodynamic characteristics. A total of 9 configurations were analyzed with variations on the position, height, dihedral angle, incidence angle, twist angle, sweepback angle, and wing area ratio of the front and rear wings while the fuselage was fixed. The quantities of aerodynamic coefficients were confirmed in accordance with joined-wing configurations. The closer the front and rear wings were located, the greater the flow interference effects tended. Interestingly, the rear wing did not any configuration change, the lift coefficient of the rear wing was decreased when adjusted to increase the incidence angle of the front wing. The phenomenon was appeared due to an effective angle of attack alteration of the rear wing resulting from the flow interference by the front wing configurations.

Parametric Study of Slow Wave Structure for Gain Enhancement and Sidelobe Suppression (이득 증가와 부엽 억제를 위한 저속파 구조의 설계변수에 대한 연구)

  • Park, Se-Been;Kang, Nyoung-Hak;Eom, Soon-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1059-1068
    • /
    • 2016
  • This paper proposes slow wave structure(SWS) utilized to increase antenna gain of printed dipole antenna(PDA) and to suppress sidelobe level simultaneously, and makes sure of electrical characteristics of the antenna according to parameter variations of components of the slow wave structure. The printed slow wave structure which is composed of a dielectric substrate and a metal rods array is located on excited direction of the PDA, affecting the radiation pattern and its intensity. Parasitic elements of the metal rods are arrayed in narrow consistent gap and have a tendency to gradually decrease in length. In this paper, array interval, element length, and taper angle are selected as the parameter of the parasitic element that effects radiation characteristics. Magnitude and phase distribution of the electrical field are observed and analyzed for each parameter variations. On the basis of these results, while the radiation pattern is analyzed, array methods of parasitic elements of the SWS for high gain characteristics are provided. The proposed antenna is designed to be operated at the Wifi band(5.15~5.85 GHz), and parameters of the parasitic element are optimized to maximize antenna gain and suppress sidelobe. Simulated and measured results of the fabricated antenna show that it has wide bandwidth, high efficiency, high gain, and low sidelobe level.

The Controller Design for Lane Following with 3-Degree of Freedom Vehicle Dynamics (3자유도 차량모델을 이용한 차선추종 µ 제어기 설계)

  • Ji, Sang-Won;Lim, Tae-Woo;You, Sam-Sang;Kim, Hwan-Seong
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.72-81
    • /
    • 2013
  • Many articles have been published about a 2-degree of freedom model that includes the lateral and yaw motions for controller synthesis in intelligent transport system applications. In this paper, a 3-degree of freedom linear model that includes the roll motion is developed to design a robust steering controller for lane following maneuvers using ${\mu}$-synthesis. This linear perturbed system includes a set of parametric uncertainties in cornering stiffness and unmodelled dynamics in steering actuators. The state-space model with parametric uncertainties is represented in linear fractional transformation form. Design purpose can be obtained by properly choosing the frequency dependent weighting functions. The objective of this study is to keep the tracking error and steering input energy small in the presence of variations of the cornering stiffness coefficients. Furthermore, good ride quality has to be achieved against these uncertainties. Frequency-domain analyses and time-domain numerical simulations are carried out in order to evaluate these performance specifications of a given vehicle system. Finally, the simulation results indicate that the proposed robust controller achieves good performance over a wide range of uncertainty for the given maneuvers.

Shape optimization for partial double-layer spherical reticulated shells of pyramidal system

  • Wu, J.;Lu, X.Y.;Li, S.C.;Zhang, D.L.;Xu, Z.H.;Li, L.P.;Xue, Y.G.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.555-581
    • /
    • 2015
  • Triangular pyramid and Quadrangular pyramid elements for partial double-layer spherical reticulated shells of pyramidal system are investigated in the present study. Macro programs for six typical partial double-layer spherical reticulated shells of pyramidal system are compiled by using the ANSYS Parametric Design Language (APDL). Internal force analysis of six spherical reticulated shells is carried out. Distribution regularity of the stress and displacement are studied. A shape optimization program is proposed by adopting the sequence two-stage algorithm (RDQA) in FORTRAN environment based on the characteristics of partial double-layer spherical reticulated shells of pyramidal system and the ideas of discrete variable optimization design. Shape optimization is achieved by considering the objective function of the minimum total steel consumption, global and locality constraints. The shape optimization of six spherical reticulated shells is calculated with the span of 30m~120m and rise to span ratio of 1/7~1/3. The variations of the total steel consumption along with the span and rise to span ratio are discussed with contrast to the results of shape optimization. The optimal combination of main design parameters for six spherical reticulated shells is investigated, i.e., the number of the optimal grids. The results show that: (1) The Kiewitt and Geodesic partial double-layer spherical reticulated shells of triangular pyramidal system should be preferentially adopted in large and medium-span structures. The range of rise to span ratio is from 1/6 to 1/5. (2) The Ribbed and Schwedler partial double-layer spherical reticulated shells of quadrangular pyramidal system should be preferentially adopted in small-span structures. The rise to span ratio should be 1/4. (3) Grids of the six spherical reticulated shells can be optimized after shape optimization and the total steel consumption is optimized to be the least.

Design of the Fixed-Bed Catalytic Reactor for the Maleic Anhydride Production (무수마레인산 생산을 위한 고정층 촉매 반응기 설계)

  • Yoon, Young Sam;Koo, Eun Hwa;Park, Pan Wook
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.467-476
    • /
    • 1999
  • This paper analyzed the behavior of fixed-bed catalytic reactor (FBCR) which synthesizing maleic anhydride(MA) from the selective oxidation of n-butane. The behavior of FBCR describing convection-diffusion-reaction mechanism is examined by using two-dimensional pseudohomogeneous plug-flow transient model, with the kinetics of Langmuir-Hinshelwood type. Prediction model is composed by optimum parameter estimation from temperature profile, yield and conversion of single FBCR on operating condition variations of Sharma's pilot-plant experiment. A double FBCR with same yield and conversion for single FBCR generated a $8.96^{\circ}C$ lower hot spot temperature than a single FBCR. We could predict parametric sensitivity according to the variation of possible operating condition (temperature, concentration, volumetric flow of feed reactant and coolant flow rate) of single and double FBCR. Double FBCR showed the behavior of more operating range than single FBCR. Double FBCR with nonuniform activities could assure safety operation condition for the possible variation of operating condition. Also, double FBCR had slightly higher than the single FBCR in conversion and yield.

  • PDF

Correlation Study on Course Keeping Stability of Barges according to Variations in Dimensions and Hull Coefficient (바지선 제원 및 선형계수에 따른 침로 안정성 연관연구)

  • Chun, Jang-Ho;Kim, Moon-Chan;Chun, Ho-Hwan;Do, In-Rok;Koo, Ja-Kyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.27-32
    • /
    • 2011
  • Recently, a ship-shaped barge has been developed to improve the resistance performance, as well as course-keeping capability. However, the stern of the barge is still similar to a box shape, and the vortex generated at the side of the barge creates drag and yaw instability. In order to solve this problem, stern skegs are normally used. The present paper deals with the correlation between the size of the stern skegs and the barge dimensions and hull coefficient. A stern skeg was designed to prevent yaw instability and minimize any additional resistance. The resistance test and course keeping test were performed in the towing tank at Pusan National University. To determine the correlation parameters between the designed stern skeg size and barge dimensions, a parametric study was also performed. Based on the experimental data from five barges, the optimum skeg dimensions were successfully derived. It is expected that the validation of the present study will be carried out by further experiments and computational comparisons in the near future.

Yield strength estimation of X65 and X70 steel pipe with relatively low t/D ratio

  • Kim, Jungho;Kang, Soo-Chang;Kim, Jin-Kook;Song, Junho
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.151-164
    • /
    • 2021
  • During the pipe forming process, a steel plate undergoes inelastic behavior multiple times under a load condition repeating tension and compression in the circumferential direction. It derives local reduction or increase of yield strength within the thickness of steel pipes by the plastic hardening and Bauschinger effect. In this study, a combined hardening model is proposed to effectively predict variations of yield strength in the circumferential direction of API-X65 and X70 steel pipes with relatively low t/D ratio during the forming process, which is expected to experience accumulated plastic strain of 2~3%, the typical Lüder band range in a low-carbon steel. Cyclic tensile tests of API-X65 and X70 steels were performed, and the parameters of the proposed model for the steels were calibrated using the test results. Bending-flattening tests to simulate repeated tension and compression during pipe forming were followed for API-X65 and X70 steels, and the results were compared with those by the proposed model and Zou et al. (2016), in order to verify the process of material model calibration based on tension-compression cyclic test, and the accuracy of the proposed model. Finally, parametric analysis for the yield strength of the steel plate in the circumferential direction of UOE pipe was conducted to investigate the effects of t/D and expansion ratios after O-forming on the yield strength. The results confirmed that the model by Zou et al. (2016) underestimated the yield strength of steel pipe with relatively low t/D ratio, and the parametric analysis showed that the t/D and expansion ratio have a significant impact on the strength of steel pipe.

Site response analysis using true coupled constitutive models for liquefaction triggering

  • Cristhian C. Mendoza-Bolanos;Andres Salas-Montoya;Oscar H. Moreno-Torres;Arturo I. Villegas-Andrade
    • Earthquakes and Structures
    • /
    • v.25 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • This study focused on nonlinear effective stress site response analysis using two coupled constitutive models, that is, the DM model (Dafalias and Manzari 2004), which incorporated a simple plasticity sand model accounting for fabric change effects, and the PMDY03 model (Khosravifar et al. 2018), that is, a 3D model for earthquake-induced liquefaction triggering and postliquefaction response. A detailed parametric study was conducted to validate the effectiveness of nonlinear site response analysis and porewater pressure (PWP) generation through a true coupled formulation for assessing the initiation of liquefaction at ground level. The coupled models demonstrated accurate prediction of liquefaction triggering, which was in line with established empirical liquefaction triggering relations in published databases. Several limitations were identified in the evaluation of liquefaction using the cyclic stress method, despite its widespread implementation for calculating liquefaction triggering. Variations in shear stiffness, represented by changes in shear wave velocity (Vs1), exerted the most significant influence on site response. The study further indicated that substantial differences in response spectra between nonlinear total stress and nonlinear effective stress analyses primarily occurred when liquefaction was triggered or on the verge of being triggered, as shown by excess PWP ratios approaching unity. These differences diminished when liquefaction occurred towards the later stages of intense shaking. The soil response was predominantly influenced by the higher stiffness values present prior to liquefaction. A key contribution of this study was to validate the criteria used to assess the triggering of level-ground liquefaction using true coupled effective-stress constitutive models, while also confirming the reliability of numerical approximations including the PDMY03 and DM models. These models effectively captured the principal characteristics of liquefaction observed in field tests and laboratory experiments.

Reforming of Hydrocarbon Fuel Using Water Jet Plasma (Water Jet 플라즈마를 이용한 탄화수소 연료 개질)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.949-954
    • /
    • 2006
  • The purpose of this paper is to develop water jet plasma reactor and investigate the optimal condition of the syngas production by reforming of hydrocarbon fuel. Fuel used was propane and plasma was generated by arc discharge on water jet surface. Discharge slipping over the water surface has a number of advantages such as a source of short-wave and UV radiation, and it can be used for biological and chemical purification of water. Parametric screening studies were conducted, in which there were the variations of power ($0.18{\sim}0.74$ kW), water jet flow rate($38.4{\sim}65.6$ mL/min), electrode gap($5{\sim}15$ mm) and treatment time($2{\sim}20$ min). When the variations were 0.4 kW, 53.9 mL/min, 10 mm and 20 min respectively, result of maximum $H_2$ concentration was 61.6%, intermediates concentration were 6.1% and propane conversion rate was 99.8%.