• 제목/요약/키워드: Parametric excitation

검색결과 147건 처리시간 0.024초

중형트럭 시동 시 엔진마운팅 시스템의 진동 특성 연구 (A Study on Vibration Characteristics of Engine Mount System of a Medium Duty Truck at the Key On/Off)

  • 국종영;임정환
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.97-102
    • /
    • 2008
  • The vibration of a vehicle, which is caused by and transmitted from the engine, has significant effect on the ride comfort and the dynamic characteristics of the engine mount system have direct influence on the vibration and noise of the vehicle. This paper examines the body shake caused by the engine excitation force on engine key on/off of a medium truck by experiment and simulation. The analysis model consists of the engine, a body including the frame, front and rear suspensions and tires. The force element between the body and the suspension is modeled as a combination of a suspension spring and a damper. The engine shake obtained from the experiment was compared with the result of the computer simulation, and by using the verified computer model, parametric study of the body shake on engine key on/off is performed with changing the stiffness of an engine mount rubber, the engine mount angle, and the position of engine mounts.

Nonlinear dynamic analysis of laterally loaded pile

  • Mehndiratta, S.;Sawant, V.A.;Samadhiya, N.K.
    • Structural Engineering and Mechanics
    • /
    • 제49권4호
    • /
    • pp.479-489
    • /
    • 2014
  • In the present study a parametric analysis is conducted to study the effect of pile dimension and soil properties on the nonlinear dynamic response of pile subjected to lateral sinusoidal load at the pile head. The study is conducted on soil-pile model of different pile diameter, pile length and soil modulus, and results are compared to get the effect. The soil-pile system is modelled using Finite element method. The programming is done in MATLAB. Time history analysis of model is done for varying non-dimensional frequency of load and the results are compared to get the non-dimensional frequency at which pile head displacement is maximum in each case. Maximum possible bending moment and soil-pile interacting forces for the dynamic excitation of the pile is also compared. When results are compared with the linear response, it is observed that non-dimensional frequency is reduced in nonlinear response on account of reduction in the soil stiffness due to yielding. Nonlinear response curve shows high amplitude as compared to linear response curve.

Hybrid nonlinear control of a tall tower with a pendulum absorber

  • Orlando, Diego;Goncalves, Paulo B.
    • Structural Engineering and Mechanics
    • /
    • 제46권2호
    • /
    • pp.153-177
    • /
    • 2013
  • Pendulums can be used as passive vibration control devices in several structures and machines. In the present work, the nonlinear behavior of a pendulum-tower system is studied. The tower is modeled as a bar with variable cross-section with concentrated masses. First, the vibration modes and frequencies of the tower are obtained analytically. The primary structure and absorber together constitute a coupled system which is discretized as a two degrees of freedom nonlinear system, using the normalized eigenfunctions and the Rayleigh-Ritz method. The analysis shows the influence of the geometric nonlinearity of the pendulum absorber on the response of the tower. A parametric analysis also shows that, with an appropriate choice of the absorber parameters, a pendulum can decrease the vibration amplitudes of the tower in the main resonance region. The results also show that the pendulum nonlinearity cannot be neglected in this type of problem, leading to multiplicity of solutions, dynamic jumps and instability. In order to improve the effectiveness of the control during the transient response, a hybrid control system is suggested. The added control force is implemented as a non-linear variable stiffness device based on position and velocity feedback. The obtained results show that this strategy of nonlinear control is attractive, has a good potential and can be used to minimize the response of slender structures under various types of excitation.

오더분석 및 상관관계를 활용한 철도차량 진동 데이터의 시간-주파수 분석 (Time-frequency Analysis of Train Vibration Using Order Analysis and Correlation)

  • 최성훈;;박춘수
    • 한국철도학회논문집
    • /
    • 제12권6호
    • /
    • pp.989-995
    • /
    • 2009
  • Short-time Fourier transforms(STFT)은 시간에 따라 변동하는 조화성분을 가지는 신호의 분석에 유용하게 적용되는 방법이다. 철도차량의 진동신호에서 많이 발견되는 운동학적 진동은 조화 특성이 속도 변화에 따라 점진적으로 변하기 때문에 오더 분석 방법과 상관함수를 이용하면 STFT 분석 방법을 개선할 수 있다. 본 논문에서는 차량의 속도 신호를 구할 수 없거나 잡음이 많을 때 상관함수를 이용하여 신호를 재추출하여 오더 분석을 적용하는 방법에 대하여 다룬다. 이 방법을 한국형고속열차의 운행 중에 취득한 차축 및 차체 진동데이터의 분석에 적용하여 기존의 STFT와 오더 분석을 이용한 방법을 비교 하였다.

시간영역 민감도 방법을 이용한 집중 질량 구조물의 천이응답 해석 (Transient Response Analysis of a Lumped Mass System Using Sensitivity Method in Time Domain)

  • 백문열;기창두
    • 전산구조공학
    • /
    • 제10권3호
    • /
    • pp.217-223
    • /
    • 1997
  • 본 논문은 집중 질량 구조물의 천이응답에 대한 시간영역 민감도 해석의 기본 개념을 설명한다. 외부 가진에 따른 구조물의 응답에 미치는 설계변수 변화의 영향을 구하기 위해 시간영역 민감도 함수를 구하는 방법을 제시하였다. 시간영역에서 구조물의 설계변수 민감도는 1차 표준 민감도 함수와 백분율 민감도 함수를 통해 확인하였다. 이러한 민감도 함수와 그 계산은 설계변수에 대한 시스템 상태변수의 편미분에 의한 것이다. 또한, 직접 미분법에 의한 해석적 방법의 편미분 결과와 수치적 방법에 의한 결과를 비교하였다.

  • PDF

On the response of base-isolated buildings using bilinear models for LRBs subjected to pulse-like ground motions: sharp vs. smooth behaviour

  • Mavronicola, Eftychia;Komodromos, Petros
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1223-1240
    • /
    • 2014
  • Seismic isolation has been established as an effective earthquake-resistant design method and the lead rubber bearings (LRBs) are among the most commonly used seismic isolation systems. In the scientific literature, a sharp bilinear model is often used for capturing the hysteretic behaviour of the LRBs in the analysis of seismically isolated structures, although the actual behaviour of the LRBs can be more accurately represented utilizing smoothed plasticity, as captured by the Bouc-Wen model. Discrepancies between these two models are quantified in terms of the computed peak relative displacements at the isolation level, as well as the peak inter-storey deflections and the absolute top-floor accelerations, for the case of base-isolated buildings modelled as multi degree-of-freedom systems. Numerical simulations under pulse-like ground motions have been performed to assess the effect of non-linear parameters of the seismic isolation system and characteristics of both the superstructure and the earthquake excitation, on the accuracy of the computed peak structural responses. Through parametric analyses, this paper assesses potential inaccuracies of the computed peak seismic response when the sharp bilinear model is employed for modelling the LRBs instead of the more accurate and smoother Bouc-Wen model.

강체운동 비선형 효과를 고려한 맥동 종동력을 받아 비행하는 보 구조물의 모델링 및 안정성 해석 (Modeling and Dynamic Stability Analysis of a Flying Beam Undertaking Pulsating Follower Forces Considering the Nonlinear Effect Due to Rigid Body Motion)

  • 현상학;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.510-515
    • /
    • 2000
  • Dynamic stability of a flying structure undertaking constant and pulsating axial forces is investigated in this paper. The equations of motion of the structure, which is idealized as a free-free beam, are derived by using the hybrid variable method and the assumed mode method. The structural system includes a directional control unit to obtain the directional stability. The analysis model presented in this paper considers the nonlinear effect due to rigid body motion of the beam. Dynamic stability of the system is influenced by the nonlinear effect. In order to examine the nonlinear effect, first the unstable regions of the linear system are obtained by using the method based upon Floquet's theory, and dynamic responses of the nonlinear system in the unstable region are obtained by using direct time integration method. Dynamic stability of the nonlinear system is determined by the obtained dynamic responses.

  • PDF

선박용 엔진 MR 마운트의 최적설계: 최대 댐핑력 (Optimal Design of Magnetorheological Mount for Ship Engines : Maximum Damping Force)

  • 박준희;도쑤웬푸;구오흥;강옥현;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.273-278
    • /
    • 2013
  • This paper presents optimal design procedures of mount based on a magnetorheological (MR) fluid to isolate the vibration in heavy diesel engine system. At first, frequency response and force-displacement transmissibility methods are used to get required damping force that is necessary for effective vibration isolation. From this result, a new type of high damping force engine mount is proposed and the governing equation of Bingham plastic behavior of MR fluid in flow path is mathematically derived under cylindrical coordinates. Finally, parametric design optimization featuring finite element is performed using ANSYS software to get the required damping force in MR mount system which can be used to reduce engine vibration. Damping force of the MR mount is then determined as an objective function in this analysis based on ANSYS. Furthermore, Magnetic analysis is then applied in this process.

  • PDF

선박용 엔진 MR 마운트의 최적설계: 최대 댐핑력 (Optimal Design of Magnetorheological Mount for Ship Engines : Maximum Damping Force)

  • 박준희;도쑤웬푸;구오흥;강옥현;최승복
    • 한국소음진동공학회논문집
    • /
    • 제23권5호
    • /
    • pp.472-478
    • /
    • 2013
  • This paper presents optimal design procedures of mount based on a magnetorheological(MR) fluid to isolate the vibration in heavy diesel engine system. At first, frequency response and force-displacement transmissibility methods are used to get required damping force that is necessary for effective vibration isolation. From this result, a new type of high damping force engine mount is proposed and the governing equation of Bingham plastic behavior of MR fluid in flow path is mathematically derived under cylindrical coordinates. Finally, parametric design optimization featuring finite element is performed using ANSYS software to get the required damping force in MR mount system which can be used to reduce engine vibration. Damping force of the MR mount is then determined as an objective function in this analysis based on ANSYS. Furthermore, Magnetic analysis is then applied in this process.

중형 버스의 브레이크 저더 현상 개선에 대한 해석적 고찰 (Analytical Study in Brake Judder Reduction of Medium Bus)

  • 이계섭;서권희;국종영;천인범
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.148-156
    • /
    • 2001
  • Brake judder, one of low Sequency vibrations in brake system is determined by the excitation of Brake Torque Variation (BTV). The largest contributor to BTV is disc thickness variation. In this study, the static loads of brake torque at Suspension Mounting Points (SW) are obtained by the quasi-static analysis using DADS. The dynamic loads with frequency of BTV at SW are derived from correlation between forced vibration analysis with static loads and brake test results. And the accelerations at steering wheel were analyzed by forced vibration analysis with dynamic loads using commercial finite element program MSC/NASTRAN so that vibration characteristics of vehicle due to brake judder were investigated. Reliability of analysis results was verified through comparing the brake test results. Also, a parametric study with natural frequencies of frame, such as the 1st torsional mode and 1st bending mode, was conducted to reduce vibration amplitudes. As a result we could detect frame natural frequency conditions to improve vibration characteristics and obtained the frame model to reduce vibration amplitude.

  • PDF