• Title/Summary/Keyword: Parametric array communication

Search Result 12, Processing Time 0.028 seconds

A Study on Digital Communication in Air Using Parametric Array (파라메트릭 어레이를 이용한 공기 중 디지털 통신 연구)

  • Je, Yub;Lee, Jae-Il;Lee, Chong-Hyun;Moon, Won-Kyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.768-773
    • /
    • 2009
  • This paper demonstrates the digital communication in air using the parametric array. The stepped-plate transducer which is suitable for high-power and high-efficient radiation is used to generate the difference frequency wave with the parametric array. The primary frequencies are selected to 83 kHz and 122 kHz and the resulting difference frequency wave at the frequency of 39 kHz is used for the communication. The modulation method is selected to On-Off Keying method. The waveform and signal-to-noise ratio (SNR) is measured and analyzed to see the characteristics of the digital communication using the parametric array. The proper distance for the communication using parametric array is about 3 m. The measured beam width of the 3dB SNR reduction was $14^{\circ}$. The possibility of the communication in air using the parametric array is confirmed and the high directional characteristic of the communication using the parametric array is expected to have the advantages for the multi path and the security problems.

Parametric Array Sonar System Based on Maximum Likelihood Detection (최대우도 검파에 기반한 파라메트릭 어레이 소나 시스템)

  • Han, Jeong-Hee;Lee, Chong-Hyun;Paeng, Dong-Guk;Bae, Jin-Ho;Kim, Won-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.25-31
    • /
    • 2011
  • In the underwater communications, transmitted acoustic signal is corrupted by interference from multipath. A parametric array transducer is capable of radiating a narrow beam with very low sidelobe levels. In certain cases, the parametric array transducer can help the multipath problem. To improve the performance of the underwater communications, the statistical signal processing methods will be required. In the paper, the communication system using a parametric array transducer was demonstrated. To detect the received signal of the communication system based on the on-off keying, the maximum likelihood method using averaged signal for a particular window size is used. The communication system has GUI using LebVIEW which allows the user to change the parameter. The GUI can also be easily modified based on the characteristics of a parametric array transducer. The implemented system can effectively evaluate the performance of the parametric array transducer.

Performance of Parametric Array Communication System in Underwater AWGN Channel (수중 AWGN 채널에서의 파라메트릭 배열 통신 성능)

  • Lee, Jaeil;Lee, Chong Hyun;Bae, Jinho;Paeng, Dong-Guk;Kim, Won-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.294-300
    • /
    • 2013
  • In this paper, we present performance analysis results of parametric array communication system in terms of theoretical BER and channel capacity of MIMO in underwater AWGN channel by using simplified SNR of difference frequency. The SNR of the difference frequency is calculated by using transmission loss, noise level, and source level of difference frequency in which nonlinear effect is considered. By assuming primary frequencies as 210 kHz and 190 kHz, difference frequency as 20 kHz, transducer diameter as 0.1 m, and noise level as 50 dB and the requested BER as $10^{-4}$, we obtain parametric array communication range gains over the communication system using primary frequency of 59.11 km in fresh water and 5 km in sea water, respectively. Also we obtain range gains of 38.84 km and 46.38 km in fresh water, and 3.88 km and 4.38 km in sea water when we use SISO and $2{\times}2$ MIMO parametric array communications for the channel capacity of 10 bps/Hz.

Design and Development Research of a Parametric Array Transducer for High Directional Underwater Communication (고지향 수중 통신을 위한 파라메트릭 어레이 트랜스듀서의 설계 및 개발 연구)

  • Hwang, Yonghwan;Je, Yub;Moon, Wonkyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.117-129
    • /
    • 2015
  • A parametric array is a nonlinear phenomenon that generates a narrow beam of low-frequency sound using the nonlinearity of the medium. The low-frequency sound so generated has a low sound pressure compared with that of sound generated directly. Consequently, a transducer that can generate a primary wave with high directivity and level is required. This study designed, fabricated, and evaluated a multi-resonance transducer as a parametric array source. The designs of the unit transducers and array transducer were based on an analysis model. The design process was repeated to fabricate the optimum transducer. The fabricated transducer array can generate a 189 dB, 190 dB primary wave level at 6.3 m and a 134 dB difference frequency wave using the parametric array phenomenon. The difference frequency wave has a frequency of 15 kHz and high directivity with an $8^{\circ}$ half power beam width in a $12{\times}18{\times}10m$ water tank.

Audio Signal Processing using Parametric Array with KZK Model (KZK 모델을 이용한 파라메트릭 어레이 음향 신호 처리)

  • Lee, Chong-Hyun;Samuel, Mano;Lee, Jea-Il;Kim, Won-Ho;Bae, Jin-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.139-146
    • /
    • 2009
  • Parametric array for audio applications is analyzed by numerical modeling and analytical approximation. The nonlinear wave equations are used to provide design guidelines for the audio parametric array. A time domain finite difference code that accurately solves the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear parabolic wave equation is used to predict the response of the parametric array. The time domain code relates the source size and the carrier frequency to the audible signal response including the output level and beamwidth to considering the implementation issues for audio applications of the parametric array, the emphasis is given to the frequency response and distortion. We use the time domain code to find out the optimal parameters that will help produce the parametric array with highest achievable output in terms of the average power within the demodulated signal. Parameters such as primary input frequency, audio source radius and the modulation method are given utmost importance. The output effect of those parameters are demonstrated through the numerical simulation.

  • PDF

Design of High Efficiency Power Amplifier for Parametric Array Transducer using Variable Output Voltage AC/DC Converter (가변출력전압 AC/DC 컨버터를 이용한 파라메트릭 어레이 트랜스듀서용 고효율 전력증폭기의 설계)

  • Shim, Jae-Hyeok;Lee, Chang-Yeol;Kim, Seul-Gi;Kim, In-Dong;Moon, Won-Kyu;Lee, Jong-Hyeon;Kim, Won-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.364-375
    • /
    • 2014
  • Parametric array transducers are used for long-range and highly directional communication in an underwater environments. The power amplifiers for parametric array transducers should have sufficient linear output characteristic and high efficiency to avoid communication errors, system heating, and fuel problems. But the conventional power amplifier with fixed source voltage is very low efficient due to large power loss by the big difference between the fixed source voltage and the amplifier output voltage. Thus to solve the problems this paper proposes the high efficiency power amplifier for parametric array transducers. The proposed power amplifier ensures high linearity of output characteristic by utilizing the push-pull class B type amplifier and furthermore gets high efficiency by applying the envelope tracking technique that variable source voltage tracks the envelope of the amplified signal. Also the paper suggests the detailed circuit topology and design guideline of class B push-pull type amplifier and variable output voltage AC/DC converter. Its characteristics are verified by the detailed simulation and experimental results.

Analysis of Highly Directional Sonar Communication System (고지향 소나 시스템 통신 성능분석)

  • Lee, Jaeil;Lee, Chong Hyun;Lee, Seung Wook;Shin, Jungchae;Jung, Jin Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.3-9
    • /
    • 2012
  • In this paper, we present novel analysis results of sonar communication using parametric array. We consider transducer diameter, primary frequency, difference frequency and acoustic power as analysis parameters of communication performance. We calculate theoretical BER(Bit Error Rate) and channel capacity of MIMO(Multi Input and Multi Output) communication system. By considering practical parameters, we obtain optimum difference frequency generation condition. The obtained primary frequency is 560 kHz, difference frequency 45kHz and acoustic power is 28.05Watt. For BER of $10^{-4}$, the range gain of parametric array communication is 3.35km compared to primary frequency communication. For channel capacity of 10bps/Hz, the SISO and $2{\times}2$ MIMO communication range of parametric array communication are 3.8km and 3.98km respectively, while primary frequency communication range is 0.83km.

Design of High-efficiency Power Amplifier System for High-directional Speaker (고지향성 스피커를 위한 새로운 전력 증폭기 설계)

  • Kim, Jin-Young;Kim, In-Dong;Moon, Wonkyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1215-1221
    • /
    • 2017
  • Parametric array transducers are used for highly directional speaker in an air environments. Piezoelectric micromachined ultrasonic transducers for parametric array transducers need DC-biased voltage driving signals in order to get high-directional quality-sound features. The existing power amplifier such as class A amplifiers has low efficiency and require large volume heatsinks. To overcome the above-mentioned disadvantages of the conventional amplifier, this paper proposes a new power amplifier system. The proposed power amplifier system ensures high linearity of output characteristic by utilizing the push-pull class B type amplifier. Furthermore, the proposed power amplifier system gets high efficiency because it contains the DC-DC converter-type power supply which can perform energy recovery and envelope tracking function. Also the paper suggests the detailed circuit topology. Its characteristics are verified by the detailed experimental results.

A Study on Characteristics of the Twin Tree Array Structure of the Triangular Patch Array Antenna (삼각형 패치 트윈 트리 배열 안테나의 특성 연구)

  • Chang, Tae-Soon;Kang, Sang-Won
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.372-377
    • /
    • 2020
  • This paper is based on the triangular inset patch antenna as the basic structure, and the array structure is the twin tree form to improve the antenna's main lobe gain and reduce the side lobe gain. A twin tree structure was implemented by placing two identical trees of 2-4-6 arrays of triangular inset patches side by side. The parametric analysis confirmed that the gap between tree structures arranged side by side is most effective for impedance matching. The fabricated antenna has a gain of 16.74 dBi at 24.15 GHz, and the beam width of the main lobe is 22° in the E-plane and 6° in the H-plane. The antenna size was 125 mm × 50 mm, and a Taconic TLC substrate with a dielectric constant of 3.2 was used. Although the main lobe gain is improved over the twin tree structure, The directivity in the beam pattern due to the mutual interference of the two tree array structure can be improved.

DOA Estimation of Multiple Signal and Adaptive Beam-forming for Mobile Communication Environments (이동통신 환경에서 다중신호의 DOA 추정과 적응 빔성형)

  • Yang, Doo-Yeong;Lee, Min-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.12
    • /
    • pp.34-42
    • /
    • 2010
  • The DOA(direction of arrival), which is based on parametric and nonparametric estimation algorithm, and adaptive beamforming algorithm for mobile communication environments are researched and analyzed. In parametric estimation algorithm, eigenvalues of the signal component and the noise component are obtained from correlation matrix of received signal by array antenna and power spectrum of the received signal is discriminated from them. Otherwise, in nonparametric estimation algorithm, we minimize a regularized objective function for finding a estimate of the signal energy as a function of angle, using nonquadratic norm which leads to supper resolution and noise suppression. And then, DOA is estimated by the signal and noise spatial steering vector, and adaptive beam-forming pattern is improved by weight vectors obtained from the spatial vector. Therefore, the improved directional estimation algorithm with regularizing sparsity constraints offers super-resolution and noise suppression compared to other algorithms.