• Title/Summary/Keyword: Parametric algorithm

Search Result 459, Processing Time 0.026 seconds

Quantitative Structure-Activity Relationships for Radical Scavenging Activities of Flavonoid Compounds by GA-MLR Technique

  • Om, Ae-Son;Ryu, Jae-Chun;Kim, Jae-Hyoun
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.2
    • /
    • pp.170-176
    • /
    • 2008
  • The quantitative structure-activity relationship (QSAR) of a set of 35 flavonoid compounds presenting antioxidant activity was established by means of Genetic Algorithm-Multiple Linear Regression (GA-MLR) technique. Four-parametric models for two sets of data, the 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity $(R^2=0.788,\;Q^2_{cv}=0.699\;and\;Q^2_{ext}=0.577)$ and scavenging activity of reactive oxgen species (ROS) induced by $H_2O_2 (R^=0.829,\;Q^2_{cv}=0.754\;and\;Q^2_{ext}=0.573)$ were obtained with low external predictive ability on a mass basis, respectively. Each model gave some different mechanistic aspects of the flavonoid compounds tested in terms of the radical scavenging activity. Topological charge, H-bonding complex and deprotonation processes were likely to be involved in the radical scavenging activity.

Robust Velocity Control for Inverter-Driven Hydraulic Elevators Using $DGKF/\mu$ Approach ($DGKF/\mu$ 기법을 이용한 인버터구동 유압 엘리베이터의 강인한 속도 제어)

  • Kang, Ki-Ho;Kim, Kyoung-Seo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.217-227
    • /
    • 2000
  • Although inverter-driven hydraulic elevators(HEL's) have advantages over traditional valve-controlled HEL's energy efficiency and performance they need robustness in performance and stability to accomodate nonlinearities big parametric variations and resonances in mechanical-hydraulic inner system. In this paper a robust controller based on DGKF/$\mu$ mixed approach is applied to a HEL system with carring capacity of 24 persons for Incheon International Airport. The results of a test tower(T/T) has shown good ro-bustness in performance and stability of the proposed controller thereby proving a feasibility of this robust controller-based approach for other HEL problems.

  • PDF

Robust Velocity Control for Inverter-Driven Hydraulic Elevators Using DGKF/μ Approach (DGKF/μ 기법을 이용한 인버터구동 유압 엘리베이터의 강인한 속도 제어)

  • 강기호;김경서
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.271-271
    • /
    • 2000
  • Although inverter-driven hydraulic elevators(HEL's) have advantages over traditional valve-controlled HEL's energy efficiency and performance they need robustness in performance and stability to accomodate nonlinearities big parametric variations and resonances in mechanical-hydraulic inner system. In this paper a robust controller based on DGKF/μ mixed approach is applied to a HEL system with carring capacity of 24 persons for Incheon International Airport. The results of a test tower(T/T) has shown good ro-bustness in performance and stability of the proposed controller thereby proving a feasibility of this robust controller-based approach for other HEL problems.

칸반 시스템의 분석과 설계

  • 김성철
    • Korean Management Science Review
    • /
    • v.9 no.1
    • /
    • pp.3-15
    • /
    • 1992
  • In this paper, we study a manufacturing system of serial stages with general service times, in which the production of each stage and the coordination of stages are controlled by Kanban discipline. This Kanban discipline is modeled as a Discrete Event Dynamic System and a system of recursive equations is applied to study the dynamics of the system. The recursive relationship enables us to compare this Kanban discipline with the other blocking disciplines such as transfer blocking, service blocking, block-and-hold b, and block-and-hold K, and the Kanban is shown to be superior to the other disciplines in terms of makespan and throughput. As a special case, two stages Kanban system is modeled as $C_2/C_2/1/N$ queueing system, and a recursive algorithm is developed to calculate the system performance. In optimizing the system performance, the stochastic optimization approach of Robbins-Monro is employed via perturbation analysis, the way to estimate the stochastic partial derivative based on only one sample trajectory of the system, and the required commuting condition is verified. Then the stochastic convexity result is established to provide second-order optimality condition for this parametric optimization problem.

  • PDF

An Automated Design and 3-D Modeling System of Axial Fans and a Boss (냉각탑용 축류팬 및 보스 설계를 위한 3차원 자동 모델링)

  • 강재관;이광일;김원일;이윤경
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.50-57
    • /
    • 2003
  • In this paper, an automated design and 3-D modeling system of an axial fan and a boss for cooling towers was developed. API and parametric design Provided by a commercial solid-modeler are engaged to automate modeling process. Design data of the boss are assumed to be given by a user with design experiences while the fan from the fan design program using three-dimensional flow analysis. An algorithm avoiding the interferences between fans and a boss is developed. The design data are registered on the database not only to remove duplicate design but also to transfer the data to ERP system.

A Robust Visual Feedback Control with Integral Compensation for Robot Manipulators (적분 보상을 포함하는 로봇 매니퓰레이터의 시각 궤환 강인 제어)

  • Lee Kang-Woong;Jie Min-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.294-299
    • /
    • 2006
  • This paper studies a visual feedback control scheme for robot manipulators with camera-in-hand configurations. We design a robust controller that compensates for bounded parametric uncertainties of robot mechanical dynamics. In order to reduce steady state tracking error of the robot arms due to uncertain dynamics, integral action is included in the control input. Using the Lyapunov stability criterion, the uniform ultimate boundedness of the tracking error is proved. Simulation and experimental results with a 2-1ink robot manipulator illustrate the robustness and effectiveness of the proposed control algorithm.

A Study on the Architectural Design Language by Design art and Cognitive science (디자인 예술과 인지과학을 활용한 건축 디자인언어의 분석)

  • Song, Suk-Hyun
    • Korean Institute of Interior Design Journal
    • /
    • v.24 no.3
    • /
    • pp.30-37
    • /
    • 2015
  • The target of design is a harmony between Beauty and Usefulness. Design is a result from representation of visual language by designer's creative thinking system. also, As an ill-defined problem cannot be described completely. and subjectively interpret depend on the situation, it is very difficult to present a theoretical standard. There have been many Design Sciences researches in recent years. such as Rule Based Design, Parametric Design, Replacement Design, Analogy Design, Metaphor Design, Genetic Algorithm. but Objective research is still unsatisfactory condition to investigate true nature about Design. At this point, It is very important to formulating about meaning of Design Language and Thinking. This study will define about that, and based on this definition, Lay out a logical basis for Treatment design variable and materialization of process by "Elements", "Relationship", "Schema". ultimately it look forward to provide a framework and minimize the complexity about Design Thinking.

Dynamic Analysis of a Moving Vehicle on Flexible beam Structure (II) : Application

  • Park, Tae-Won;Park, Chan-Jong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.64-71
    • /
    • 2002
  • Recently, mechanical systems such as a high-speed vehicles and railway trains moving on flexible beam structures have become a very important issue to consider. Using the general approach proposed in the first part of this paper, it is possible to predict motion of the constrained mechanical system and the elastic structure, with various kinds of foundation supporting conditions. Combined differential-algebraic equation of motion derived from both multibody dynamics theory and finite element method can be analyzed numerically using a generalized coordinate partitioning algorithm. To verify the validity of this approach, results from the simply supported elastic beam subjected to a moving load are compared with the exact solution from a reference. Finally, parametric study is conducted for a moving vehicle model on a simply supported 3-span bridge.

Reverse Engineering for Sculptured Surfaces by Using NURBS Approximation (역공학(Reverse Engineering)을 위한 자유곡면 형상의 NURBS Approximation)

  • Cho, Jae-Hyung;Cho, Myung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.108-115
    • /
    • 2002
  • In measuring step for reverse engineering of sculptured surfaces, computer vision system is used to simplify the complicated surface by boundary edge detection method that minimizes the measuring error. The measured data by Coordinate measuring machine is clouded data points of surfaces which is segmented surface using image process. In this research, the measured data is approximated as NURBS surfaces by new suggested algorithm. The position and number of control points, selection of parametric values and compensation of weight factors are proposed. Finally, surface model is simulated and improved resulting performance is obtained.

Genetic algorithm optimization of precast hollow core slabs

  • Sgambi, Luca;Gkoumas, Konstantinos;Bontempi, Franco
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.389-409
    • /
    • 2014
  • Precast hollow core slabs (HCS) are technically advanced products in the precast concrete industry, widely used in the last years due to their versatility, their multipurpose potential and their low cost. Using three dimensional FEM (Finite Element Method) elements, this study focuses on the stresses induced by the prestressing of steel. In particular the investigation of the spalling crack formation that takes place during prestressing is carried out, since it is important to assure the appropriate necessary margins concerning such stresses. In fact, spalling cracks may spread rapidly towards the web, leading to the detachment of the lower part of the slab. A parametric study takes place, capable of evaluating the influence of the tendon position and of the web width on the spalling stress. Consequently, after an extensive literature review on the topic of soft computing, an optimization of the HCS is performed by means of Genetic Algorithms coupled with 3-D FEM models.