• Title/Summary/Keyword: Parametric algorithm

Search Result 459, Processing Time 0.032 seconds

A Finite Memory Filter for Discrete-Time Stochastic Linear Delay Systems

  • Song, Il Young;Song, Jin Mo;Jeong, Woong Ji;Gong, Myoung Sool
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.216-220
    • /
    • 2019
  • In this paper, we propose a finite memory filter (estimator) for discrete-time stochastic linear systems with delays in state and measurement. A novel filtering algorithm is designed based on finite memory strategies, to achieve high estimation accuracy and stability under parametric uncertainties. The new finite memory filter uses a set of recent observations with appropriately chosen initial horizon conditions. The key contribution is the derivation of Lyapunov-like equations for finite memory mean and covariance of system state with an arbitrary number of time delays. A numerical example demonstrates that the proposed algorithm is more robust and accurate than the Kalman filter against dynamic model uncertainties.

Aerodynamic shape optimization of a high-rise rectangular building with wings

  • Paul, Rajdip;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.34 no.3
    • /
    • pp.259-274
    • /
    • 2022
  • The present paper is focused on analyzing a set of Computational Fluid Dynamics (CFD) simulation data on reducing orthogonal peak base moment coefficients on a high-rise rectangular building with wings. The study adopts an aerodynamic optimization procedure (AOP) composed of CFD, artificial neural network (ANN), and genetic algorithm (G.A.). A parametric study is primarily accomplished by altering the wing positions with 3D transient CFD analysis using k - ε turbulence models. The CFD technique is validated by taking up a wind tunnel test. The required design parameters are obtained at each design point and used for training ANN. The trained ANN models are used as surrogates to conduct optimization studies using G.A. Two single-objective optimizations are performed to minimize the peak base moment coefficients in the individual directions. An additional multiobjective optimization is implemented with the motivation of diminishing the two orthogonal peak base moments concurrently. Pareto-optimal solutions specifying the preferred building shapes are offered.

A Study on the Point-Mass Filter for Nonlinear State-Space Models (비선형 상태공간 모델을 위한 Point-Mass Filter 연구)

  • Yeongkwon Choe
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.57-62
    • /
    • 2023
  • In this review, we introduce the non-parametric Bayesian filtering algorithm known as the point-mass filter (PMF) and discuss recent studies related to it. PMF realizes Bayesian filtering by placing a deterministic grid on the state space and calculating the probability density at each grid point. PMF is known for its robustness and high accuracy compared to other nonparametric Bayesian filtering algorithms due to its uniform sampling. However, a drawback of PMF is its inherently high computational complexity in the prediction phase. In this review, we aim to understand the principles of the PMF algorithm and the reasons for the high computational complexity, and summarize recent research efforts to overcome this challenge. We hope that this review contributes to encouraging the consideration of PMF applications for various systems.

Quantification of Cerebrovascular Reserve Using Tc-99m HMPAO Brain SPECT and Lassen's Algorithm (Tc-99m HMPAO 뇌 SPECT와 Lassen 알고리즘을 이용한 뇌혈관 예비능의 정량화)

  • Kim, Kyeong-Min;Lee, Dong-Soo;Kim, Seok-Ki;Lee, Jae-Sung;Kang, Keon-Wook;Yeo, Jeong-Seok;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.4
    • /
    • pp.322-335
    • /
    • 2000
  • Purpose: For quantitative estimation of cerebrovascular reserve (CVR), we estimated the cerebral blood flow (CBF) using Lassen's nonlinearity correction algorithm and Tc-99m HMPAO brain SPECT images acquired with consecutive acquisition protocol. Using the values of CBF in basal and acetaBolamide (ACZ) stress states, CBF increase was calculated. Materials and Methods: In 9 normal subjects (age; $72{\pm}4$ years), brain SPECT was performed at basal and ACZ stress states consecutively after injection of 555 MBq and 1,110 MBq of Tc-99m HMPAO, respectively. Cerebellum was automatically extracted as reference region on basal SPECT image using threshold method. Assuming basal CBF of cerebellum as 55 ml/100g/min, CBF was calculated lot every pixel at basal states using Lassen's algorithm. Cerebellar blood flow at stress was estimated comparing counts of cerebellum at rest and ACZ stress and Lassen's algorithm. CBF of every pixel at ACZ stress state was calculated using Lassen's algorithm and ACZ cerebellar count. CVR was calculated by subtracting basal CBF from ACZ stress CBF for every pixel. The percent CVR was calculated by dividing CVR by basal CBF. The CBF and percentage CVR parametric images were generated. Results: The CBF and percentage CVR parametric images were obtained successfully in all the subjects. Global mean CBF were $49.6{\pm}5.5ml/100g/min\;and\;64.4{\pm}10.2ml/100g/min$ at basal and ACZ stress states, respectively. The increase of CBF at ACZ stress state was $14.7{\pm}9.6ml/100g/min$. The global mean percent CVR was 30.7% and was higher than the 13.8% calculated using count images. Conclusion: The blood flow at basal and ACZ stress states and cerebrovascular reserve were estimated using basal/ACZ Tc-99m-HMPAO SPECT images and Lassen's algorithm. Using these values, parametric images for blood flow and cerebrovascular reserve were generated.

  • PDF

A collision-free path planning using linear parametric curve based on geometry mapping of obstacles (장애물의 기하투영에 의한 일차매개곡선을 이용한 충돌회피 경로계획)

  • Nam-Gung, In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.1992-2007
    • /
    • 1997
  • A new algorithm for planning a collision-free path is developed based on linear prametric curve. In this paper robot is assumed to a point, and two linear parametric curve is used to construct a path connecting start and goal point, in which single intermediate connection point between start and goal point is considered. The intermediate connection point is set in polar coordinate(${\theta}{\delta}$) , and the interference between path and obstacle is mapped into CPS(connection point space), which is defined a CWS GM(circular work space geometry mapping). GM of all obstacles in workspace creates overlapping images of obstacle in CPS(Connection Point Space). The GM for all obstacles produces overlapping images of obstacle in CPS. The empty area of CPS that is not occupied by obstacle images represents collision-free paths in Euclidian Space. A GM based on connection point in elliptic coordinate(${\theta}{\delta}$) is also developed in that the total length of path is depend only on the variable .delta.. Hence in EWS GM(elliptic work space geometry mapping), increasing .delta. and finding the value of .delta. for collision-free path, the shortest path can be searched without carring out whole GM. The GM of obstacles expersses all possible collision-free path as empty spaces in CPS. If there is no empty space available in CPS, it indicates that path planning is not possible with given number of connection points, i.e. path planning is failed, and it is necessary to increase the number of connection point. A general case collision-free path planning is possible by appling GM to configuration space obstacles. Simulation of GM of obstacles in Euclidian space is carried out to measure performance of algorithm and the resulting obstacle images are reported.

Damage index based seismic risk generalization for concrete gravity dams considering FFDI

  • Nahar, Tahmina T.;Rahman, Md M.;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.53-66
    • /
    • 2021
  • The determination of the damage index to reveal the performance level of a structure can constitute the seismic risk generalization approach based on the parametric analysis. This study implemented this concept to one kind of civil engineering structure that is the concrete gravity dam. Different cases of the structure exhibit their individual responses, which constitute different considerations. Therefore, this approach allows the parametric study of concrete as well as soil for evaluating the seismic nature in the generalized case. To ensure that the target algorithm applicable to most of the concrete gravity dams, a very simple procedure has been considered. In order to develop a correlated algorithm (by response surface methodology; RSM) between the ground motion and the structural property, randomized sampling was adopted through a stochastic method called half-fractional central composite design. The responses in the case of fluid-foundation-dam interaction (FFDI) make it more reliable by introducing the foundation as being bounded by infinite elements. To evaluate the seismic generalization of FFDI models, incremental dynamic analysis (IDA) was carried out under the impacts of various earthquake records, which have been selected from the Pacific Earthquake Engineering Research Center data. Here, the displacement-based damage indexed fragility curves have been generated to show the variation in the seismic pattern of the dam. The responses to the sensitivity analysis of the various parameters presented here are the most effective controlling factors for the concrete gravity dam. Finally, to establish the accuracy of the proposed approach, reliable verification was adopted in this study.

Generation of Discrete $G^1$ Continuous B-spline Ship Hullform Surfaces from Curve Network Using Virtual Iso-parametric Curves

  • Rhim, Joong-Hyun;Cho, Doo-Yeoun;Lee, Kyu-Yeul;Kim, Tae-Wan
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.2
    • /
    • pp.24-36
    • /
    • 2006
  • Ship hullform is usually designed with a curve network, and smooth hullform surfaces are supposed to be generated by filling in (or interpolating) the curve network with appropriate surface patches. Tensor-product surfaces such as B-spline and $B\'{e}zier$ patches are typical representations to this interpolating problem. However, they have difficulties in representing the surfaces of irregular topological type which are frequently appeared in the fore- and after-body of ship hullform curve network. In this paper, we proposed a method that can automatically generate discrete $G^1$ continuous B-spline surfaces interpolating given curve network of ship hullform. This method consists of three steps. In the first step, given curve network is reorganized to be of two types: boundary curves and reference curves of surface patches. Especially, the boundary curves are specified for their surface patches to be rectangular or triangular topological type that can be represented with tensor-product (or degenerate) B-spline surface patches. In the second step, surface fitting points and cross boundary derivatives are estimated by constructing virtual iso-parametric curves at discrete parameters. In the last step, discrete $G^1$ continuous B-spline surfaces are generated by surface fitting algorithm. Finally, several examples of resulting smooth hullform surfaces generated from the curve network data of actual ship hullform are included to demonstrate the quality of the proposed method.

Improvement of the Prediction of Natural Frequencies Of Composite Laminated Plate Using Parametric Identification (변수 식별을 통한 복합재의 적층판의 고유진동수 예측 개선)

  • 홍단비;유정규;김승조
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 1999
  • In order to predict the dynamic behavior of composite laminated plate accurately, the parametric identification is performed using its mechanical properties- $E_1,\;E_2,\;V_{12},\;G_{12}$ as design parameters. After natural frequencies are measured through simple vibration test, the objective function consists of the sum of errors between experimental and numerical frequencies of a structure. As optimization algorithm, conjugate gradient method is used to minimize the objective function. Sensitivity Analysis is performed to update design parameters during this process and can explain the result of parametric identification. In order to check the propriety of result, mode shapes are compared before and after identification. The improved prediction of natural frequencies of composite laminated plate is obtained with updated properties. For the application of result, updated properties is applied to the composite laminated plate that has different stacking sequence.

  • PDF

Experimental Study and Correlation Development of Critical Heat Flux under Low Pressure and Low Flow Condition

  • Kim, Hong-Chae;Baek, Won-Pil;Kim, Han-Kon;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.356-361
    • /
    • 1997
  • To investigate parametric effect on CHF and to get CHF data, experimental study has been performed with vertical round tubes under the condition of low pressure and low flow (LPLF). Test sections are made of Inconel-625 tube and have the geometry of 8 and 10 mm in diameter, and 0.5 and 1.0 m in heated length. All experiments have been conducted at the pressure of under 9 bar, the mass flux of under 250 kg/$m^2$ and the inlet subcooling of 350 and 450 kJ/kg, for stable upward flow with water as a coolant. Flow regime analysis has been performed for obtained CHF data with Mishima's flow regime map, which reveals that most of the CHF occur in the annular-mist flow regime. General parametric trends of the collected CHF data are consistent with those of previous studies. However, for the pressure effect on CHF, two different are observed; For relatively high mass flux, CHF increases with pressure and far lower mass flux, CHF decrease with pressure. Using modern data regression tool, ACE algorithm, two new CHF correlations for LPLF condition are developed based on local condition and inlet condition, respectively. The developed CHF correlations show better prediction accuracy compared with existing CHF prediction methods.

  • PDF

Gesture Recognition and Motion Evaluation Using Appearance Information of Pose in Parametric Gesture Space (파라메트릭 제스처 공간에서 포즈의 외관 정보를 이용한 제스처 인식과 동작 평가)

  • Lee, Chil-Woo;Lee, Yong-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.8
    • /
    • pp.1035-1045
    • /
    • 2004
  • In this paper, we describe a method that can recognize gestures and evaluate the degree of the gestures from sequential gesture images by using Gesture Feature Space. The previous popular methods based on HMM and neural network have difficulties in recognizing the degree of gesture even though it can classify gesture into some kinds. However, our proposed method can recognize not only posture but also the degree information of the gestures, such as speed and magnitude by calculating distance among the position vectors substituting input and model images in parametric eigenspace. This method which can be applied in various applications such as intelligent interface systems and surveillance systems is a simple and robust recognition algorithm.

  • PDF