• 제목/요약/키워드: Parametric Study Method

검색결과 1,469건 처리시간 0.033초

Effect of Guide Vane on the Performance of Impulse Turbine for Wave Energy Conversion

  • HYUN BEOM-SOO;MOON JAE-SEUNG;HONG SEOK-WON
    • 한국해양공학회지
    • /
    • 제18권6호
    • /
    • pp.1-7
    • /
    • 2004
  • This paper deals with the performance analysis of the impulse turbine for a owe type wave energy conversion device. Numerical analysis was performed using the commercially-available software FLUENT. This parametric study includes variation of the setting angle of the guide vane. Since parametric study at various flow coefficients requires a tremendous amount of computing time, two-dimensional cascade flow approximation was employed to determine the optimum principal particulars in a rather simple manner. A Full three-dimensional calculation was also performed for several cases to confirm the validity of the two-dimensional approach. Results were compared to other experimental data, such as Setoguchi et al. (2001)'s extensive set of data, and found that the usefulness of 2-D analysis was well demonstrated. The advantages of each method were also evaluated.

Stormwater Quality simulation with KNNR Method based on Depth function

  • Lee, Taesam;Park, Daeryong
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.557-557
    • /
    • 2015
  • To overcome main drawbacks of parametric models, k-nearest neighbor resampling (KNNR) is suggested for water quality analysis involving geographic information. However, with KNNR nonparametric model, Geographic information is not properly handled. In the current study, to manipulate geographic information properly, we introduce a depth function which is a novel statistical concept in the classical KNNR model for stormwater quality simulation. An application is presented for a case study of the total suspended solids throughout the entire United States. Total suspended solids concentration data of stormwater demonstrated that the proposed model significantly improves the simulation performance rather than the existing KNNR model.

  • PDF

파라메트릭 활성함수를 이용한 심층신경망의 성능향상 방법 (Performance Improvement Method of Deep Neural Network Using Parametric Activation Functions)

  • 공나영;고선우
    • 한국콘텐츠학회논문지
    • /
    • 제21권3호
    • /
    • pp.616-625
    • /
    • 2021
  • 심층신경망은 임의의 함수를 근사화하는 방법으로 선형모델로 근사화한 후에 비선형 활성함수를 이용하여 추가적 근사화를 반복하는 근사화 방법이다. 이 과정에서 근사화의 성능 평가 방법은 손실함수를 이용한다. 기존 심층학습방법에서는 선형근사화 과정에서 손실함수를 고려한 근사화를 실행하고 있지만 활성함수를 사용하는 비선형 근사화 단계에서는 손실함수의 감소와 관계가 없는 비선형변환을 사용하고 있다. 본 연구에서는 기존의 활성함수에 활성함수의 크기를 변화시킬 수 있는 크기 파라메터와 활성함수의 위치를 변화시킬 수 있는 위치 파라미터를 도입한 파라메트릭 활성함수를 제안한다. 파라메트릭 활성함수를 도입함으로써 활성함수를 이용한 비선형 근사화의 성능을 개선시킬 수 있다. 각 은닉층에서 크기와 위치 파라미터들은 역전파 과정에서 파라미터들에 대한 손실함수의 1차 미분계수를 이용한 학습과정을 통해 손실함수 값을 최소화시키는 파라미터를 결정함으로써 심층신경망의 성능을 향상시킬 수 있다. MNIST 분류 문제와 XOR 문제를 통하여 파라메트릭 활성함수가 기존의 활성함수에 비해 우월한 성능을 가짐을 확인하였다.

Statistical Parametric Mapping을 이용한 시상면에서의 양발 착지와 외발 착지의 전략 차이 (Analysis of the Differences of the Shock Attenuation Strategy between Double-leg and Single-leg Landing on Sagittal Plane using Statistical Parametric Mapping)

  • Ha, Sunghe;Park, Sang-Kyoon;Lee, Sae Yong
    • 한국운동역학회지
    • /
    • 제29권4호
    • /
    • pp.255-261
    • /
    • 2019
  • Objective: The purpose of this study was to investigate differences of shock attenuation strategies between double-leg and single-leg landing on sagittal plane using statistical parametric mapping. Method: Nine healthy female professional soccer players (age: 24.0±2.5 yrs, height: 164.9±3.3 cm, weight: 55.7±6.6 kg, career: 11.2±1.4 yrs) were participated in this study. The subjects performed 10 times of double-leg and single-leg landing from the box of 30 cm height onto force plates respectively. The ground reaction force, angle, moment, angular velocity, and power of the ankle, knee, and hip joint on sagittal plane was calculated from initial contact to maximum knee flexion during landing phase. Statistical parametric mapping was used to compare the biomechanical variables of double-leg and single-leg landing of the dominant leg throughout the landing phase. Each mean difference of variables was analyzed using a paired t-test and alpha level was set to 0.05. Results: For the biomechanical variables, significantly increased vertical ground reaction force, plantarflexion moment of the ankle joint, negative ankle joint power and extension moment of the hip joint were found in single-leg landing compared to double-leg landing (p<.05). In addition, the flexion angle and angular velocity of the knee and hip joint in double-leg landing were observed significantly greater than single-leg landing, respectively (p<.05). Conclusion: These findings suggested that negative joint power and plantarflexion moment of the ankle joint can contribute to shock absorption during single-leg landing and may be the factors for preventing the musculoskeletal injuries of the lower extremity by an external force.

밀착의형 3차원 파라메트릭 모델을 활용한 상반신 원형의 다트 및 절개분리선 설정에 관한 연구 (A Study on Setting Darts and Split Lines of Upper Bodice Pattern on 3D Parametric Model dressed with Tight-fit Garment)

  • 박순지;김혜진
    • 한국의류산업학회지
    • /
    • 제12권4호
    • /
    • pp.467-476
    • /
    • 2010
  • The purpose of this study was to develop a plausible methodology based on experimental data how to set up darts and split lines on 3D parametric body dressed with tight-fit garment. The results were as following: Through the process of making convex hull, the concave parts were straightened to make a convex hull, especially in the center part of bust, under breast part and scapular part. To figure out the optimum positions of darts and split lines, the inflection points of curve ratio were searched along the horizontal polylines of waist and bust. This procedures produced reliable results with low deviation. Using Rapidform, CATIA and Unigraphics, six patches of bodice patterns were drawn and aligned. Paired t-test results showed the outline and area between 3D surface and 2D were not significantly different, meaning this method could be adaptable when flattening 3D surfaces. The amount of waist dart measured on the pattern showed that the highest portion was allocated on 2nd dart(back), followed by 1st dart(back), 1st dart(front), 2nd dart(front)/side dart, and center back dart. A series of findings suggested that curve ration inflection point could be used as a guide to set up darts and split line on 3D parametric model with low deviation.

Factors Clustering Approach to Parametric Cost Estimates And OLAP Driver

  • JaeHo, Cho;BoSik, Son;JaeYoul, Chun
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.707-716
    • /
    • 2009
  • The role of cost modeller is to facilitate the design process by systematic application of cost factors so as to maintain a sensible and economic relationship between cost, quantity, utility and appearance which thus helps in achieving the client's requirements within an agreed budget. There are a number of research on cost estimates in the early design stage based on the improvement of accuracy or impact factors. It is common knowledge that cost estimates are undertaken progressively throughout the design stage and make use of the information that is available at each phase, through the related research up to now. In addition, Cost estimates in the early design stage shall analyze the information under the various kinds of precondition before reaching the more developed design because a design can be modified and changed in all process depending on clients' requirements. Parametric cost estimating models have been adopted to support decision making in a changeable environment, in the early design stage. These models are using a similar instance or a pattern of historical case to be constituted in project information, geographic design features, relevant data to quantity or cost, etc. OLAP technique analyzes a subject data by multi-dimensional points of view; it supports query, analysis, comparison of required information by diverse queries. OLAP's data structure matches well with multiview-analysis framework. Accordingly, this study implements multi-dimensional information system for case based quantity data related to design information that is utilizing OLAP's technology, and then analyzes impact factors of quantity by the design criteria or parameter of the same meaning. On the basis of given factors examined above, this study will generate the rules on quantity measure and produce resemblance class using clustering of data mining. These sorts of knowledge-base consist of a set of classified data as group patterns, of which will be appropriate stand on the parametric cost estimating method.

  • PDF

수평배수재를 이용한 진공압밀공법의 해석에 관한 연구 (A Study on the Analysis of Vacuum Consolidation with Horizontal Drains)

  • 김홍택;김석열;윤창진;강인규;김창겸
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.520-527
    • /
    • 2000
  • In the present study, the analytical approaches of vacuum consolidation with horizontal drains were proposed, For dissipating rapidly pore-water in hydraulic fills, vacuum consolidation method applied vacuum pressure in horizontal drains is developed. In the analytical approaches, the governing equation is based on two-dimensional finite strain consolidation theory and the boundary conditions of horizontal drains are considered in applying negative pore-water pressure occurred by vacuum pressure, Also, parametric studies to vacuum pressure and installation pattern of horizontal drains are carried out.

  • PDF

UNIFICATION OF DESIGN AND CONSTRUCTION OF DEEP EXCAVATION

  • Lee, Seung-Rae
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1990년도 PROCEEDINGS OF THE FIRST KOREA-JAPAN JOINT GEOTECHNICAL SEMINAR ON EXCAVATION and TUNNELING IN URBAN AREAS
    • /
    • pp.163-175
    • /
    • 1990
  • A main factor in the design of excavation in an urban area is the movements. The finite element method provides rational predictions of excavation behaviour, yet practical engineers may find difficulties in applying it to the actual field case. In this study, factors affecting the excavation behaviour are considered in details and the applicability of the finite element method to the actual field excavation cases is presented. Numerical examples are analyzed to provide results of parametric study on the affecting factors.

  • PDF

능력스펙트럼을 이용한 가새형 소성 감쇠기의 설계 (Design of Unbend Braces Using Capacity Spectrum Method)

  • 최현훈;김유정;김진구
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.260-267
    • /
    • 2001
  • In this study straightforward design procedure for unbond brace hysteretic dampers is developed. The required amount of equivalent damping to satisfy given performance acceptance criteria is obtained conveniently based on the capacity spectrum method without carrying out time-consuming nonlinear dynamic time history analysis. Then the size of the unbend braces is determined from the required equivalent damping. Parametric study is performed for the design variables such as natural period, yield strength, the stiffness after the first yield, yield stress of the unbond brace.

  • PDF

상관관계의 존재하에서 붓스트랩 기법을 이용한 $\bar{x}$ 와 EWMA관리도의 수행도 평가 (Performance Evaluation of $\bar{x}$ and EWMA Control Charts using Bootstrap Technique in the Presence of Correlation)

  • 손한덕;송서일
    • 한국산업경영시스템학회:학술대회논문집
    • /
    • 한국산업경영시스템학회 2002년도 춘계학술대회
    • /
    • pp.365-370
    • /
    • 2002
  • In this study, according to MARMA(1,0) model which was suggested by Seppala, in case of existing autocorrelation in X control chart and EWMA control chart, the standard method and the non-parametric bootstrap method were compared and analysed using the bootstrap method which use the resampling prediction residual.

  • PDF