• Title/Summary/Keyword: Parametric Study Method

Search Result 1,470, Processing Time 0.023 seconds

Experimental and numerical investigation of strengthened deficient steel SHS columns under axial compressive loads

  • Shahraki, Mehdi;Sohrabi, Mohammad Reza;Azizyan, Gholam Reza;Narmashiri, Kambiz
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.207-217
    • /
    • 2018
  • In past years, numerous problems have vexed engineers with regard to buckling, corrosion, bending, and overloading in damaged steel structures. This article sets out to investigate the possible effects of carbon fiber reinforced polymer (CFRP) and steel plates for retrofitting deficient steel square hollow section (SHS) columns. The effects of axial loading, stiffness, axial displacement, the position and shape of deficient region on the length of steel SHS columns, and slenderness ratio are examined through a detailed parametric study. A total of 14 specimens was tested for failure under axial compression in a laboratory and simulated using finite element (FE) analysis based on a numerical approach. The results indicate that the application of CFRP sheets and steel plates also caused a reduction in stress in the damaged region and prevented or retarded local deformation around the deficiency. The findings showed that a deficiency leads to reduced load-carrying capacity of steel SHS columns and the retrofitting method is responsible for the increase in the load-bearing capacity of the steel columns. Finally, this research showed that the CFRP performed better than steel plates in compensating the axial force caused by the cross-section reduction due to the problems associated with the use of steel plates, such as in welding, increased weight, thermal stress around the welding location, and the possibility of creating another deficiency by welding.

Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates

  • Ebrahimi, Farzad;Jafari, Ali;Mahesh, Vinyas
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.113-129
    • /
    • 2019
  • A four-variable shear deformation refined plate theory has been proposed for dynamic characteristics of smart plates made of porous magneto-electro-elastic functionally graded (MEE-FG) materials with various boundary conditions by using an analytical method. Magneto-electro-elastic properties of FGM plate are supposed to vary through the thickness direction and are estimated through the modified power-law rule in which the porosities with even and uneven type are approximated. Pores possibly occur inside functionally graded materials (FGMs) due the result of technical problems that lead to creation of micro-voids in these materials. The variation of pores along the thickness direction influences the mechanical properties. The governing differential equations and boundary conditions of embedded porous FGM plate under magneto-electrical field are derived through Hamilton's principle based on a four-variable tangential-exponential refined theory which avoids the use of shear correction factors. An analytical solution procedure is used to achieve the natural frequencies of embedded porous FG plate supposed to magneto-electrical field with various boundary condition. A parametric study is led to carry out the effects of material graduation exponent, coefficient of porosity, magnetic potential, electric voltage, elastic foundation parameters, various boundary conditions and plate side-to-thickness ratio on natural frequencies of the porous MEE-FG plate. It is concluded that these parameters play significant roles on the dynamic behavior of porous MEE-FG plates. Presented numerical results can serve as benchmarks for future analyses of MEE-FG plates with porosity phases.

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (II): Theoretical study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.409-420
    • /
    • 2017
  • This paper theoretically studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Finite element models of connections with long and short embedded steel columns are built in ABAQUS and validated against the test results in the companion paper. Parametric studies are carried out using the validated FE model to determine the key influencing factors on the load-bearing capacity of connections. A close-form solution of the load-bearing capacity of connections is proposed by considering the contributions from the compressive strength of concrete at the interface between the embedded beam and concrete, shear yielding of column web in the tensile region, and shear capacity of column web and concrete in joint zone. The results show that the bond slip between embedded steel members and concrete should be considered which can be simulated by defining contact boundary conditions. It is found that the loadbearing capacity of connections strongly depends on the section height, flange width and web thickness of the embedded column. The accuracy of the proposed calculation method is validated against test results and also verified against FE results (with differences within 10%). It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility. The thickness and section height of embedded columns should be increased to enhance the load-bearing capacity of connections. The stirrups in the joint zone should be strengthened and embedded columns with very small section height should be avoided.

Experimental and numerical investigation on the behavior of concrete-filled rectangular steel tubes under bending

  • Zhang, Tao;Gong, Yong-zhi;Ding, Fa-xing;Liu, Xue-mei;Yu, Zhi-wu
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.231-253
    • /
    • 2021
  • Pure bending loading conditions are not frequently occurred in practical engineering, but the flexural researches are important since it's the basis of mechanical property researches under complex loading. Hence, the objective of this paper is to investigate the flexural behavior of concrete-filled rectangular steel tube (CFRT) through combined experimental and numerical studies. Flexural tests were conducted to investigate the mechanical performance of CFRT under bending. The load vs. deflection curves during the loading process was analyzed in detail. All the specimens behaved in a very ductile manner. Besides, based on the experimental result, the composite action between the steel tube and core concrete was studies and examined. Furthermore, the feasibility and accuracy of the numerical method was verified by comparing the computed results with experimental observations. The full curves analysis on the moment vs. curvature curves was further conducted, where the development of the stress and strain redistribution in the steel tube and core concrete was clarified comprehensively. It should be noted that there existed bond slip between the core concrete and steel tube during the loading process. And then, an extensive parametric study, including the steel strength, concrete strength, steel ratio and aspect ratio, was performed. Finally, design formula to calculate the ultimate moment and flexural stiffness of CFRTs were presented. The predicted results showed satisfactory agreement with the experimental and FE results. Additionally, the difference between the experimental/FE and predicted results using the related design codes were illustrated.

Development of MKDE-ebd for Estimation of Multivariate Probabilistic Distribution Functions (다변량 확률분포함수의 추정을 위한 MKDE-ebd 개발)

  • Kang, Young-Jin;Noh, Yoojeong;Lim, O-Kaung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.55-63
    • /
    • 2019
  • In engineering problems, many random variables have correlation, and the correlation of input random variables has a great influence on reliability analysis results of the mechanical systems. However, correlated variables are often treated as independent variables or modeled by specific parametric joint distributions due to difficulty in modeling joint distributions. Especially, when there are insufficient correlated data, it becomes more difficult to correctly model the joint distribution. In this study, multivariate kernel density estimation with bounded data is proposed to estimate various types of joint distributions with highly nonlinearity. Since it combines given data with bounded data, which are generated from confidence intervals of uniform distribution parameters for given data, it is less sensitive to data quality and number of data. Thus, it yields conservative statistical modeling and reliability analysis results, and its performance is verified through statistical simulation and engineering examples.

A trend analysis of seasonal average temperatures over 40 years in South Korea using Mann-Kendall test and sen's slope (Mann-Kendall 비모수 검정과 Sen's slope를 이용한 최근 40년 남한지역 계절별 평균기온의 경향성 분석)

  • Jin, Dae-Hyun;Jang, Sung-Hwan;Kim, Hee-Kyung;Lee, Yung-Seop
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.439-447
    • /
    • 2021
  • Due to the frequent emergence of global abnormal climates, related studies on meteorological change is being actively proceed. However, the research on trend analysis using weather data accumulated over a long period of time was insufficient. In this study, the trend of temperature time series data accumulated from automated surface observing system (ASOS) for 40 years was analyzed by using a non-parametric analysis method. As a result of the Mann-Kendall test on the annual average temperature and seasonal average temperature time series data in South Korea, it has shown that an upward trend exists. In addition, the result of calculating the Sen's slope, which can determine the degree of tendency before and after the searched change point by applying the Pettitt test, recent data after the fluctuation point confirmed that the tendency of temperature rise was even greater.

Study on AR/VR Model Generation Techniques Using Piping Isometric Drawing Files (배관 ISO도면 파일 기반 AR/VR모델 생성 기법 연구)

  • Lee, Jung-Min;Lee, Kyung-Ho;Kim, Yang-Ouk;Han, Young-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.19-24
    • /
    • 2021
  • This paper presents a method to generate three-dimensional AR/VR models using the information in Isogen data files (IDFs). An IDF is an output file produced by ISOGEN that contains piping isometric drawings. A piping isometric drawing is used for pipeline installation in the shipyard; therefore, the drawing describes assembly information with symbolic features, not with detailed geometric features. An IDF specifies relationships between piping routes and components with three-dimensional points and tag information as well as the bill of the materials of a pipeline. The key idea of this paper is that AR/VR models can be generated with the piping route points data and piping components tag information in real time, without any conversion of standard data exchange file formats, such as STP, IGES, and SAT. This paper describes IDF data structure and suggests the geometry generation process with IDF data and parametric functions.

Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory

  • Atmane, Redhwane Ait;Mahmoudi, Noureddine;Bennai, Riadh;Atmane, Hassen Ait;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.95-107
    • /
    • 2021
  • In this work, the dynamic response of functionally graded beams on variable elastic foundations is studied using a novel higher-order shear deformation theory (HSDT). Unlike the conventional HSDT, the present one has a new displacement field which introduces undetermined integral variables. The FG beams were assumed to be supported on Winkler-Pasternak type foundations in which the Winkler modulus is supposed to be variable in the length of the beam. The variable rigidity of the elastic foundation is assumed to be linear, parabolic and sinusoidal along the length of the beam. The material properties of the FG porous beam vary according to a power law distribution in terms of the volume fraction of the constituents. The equations of motion are determined using the virtual working principle. For the analytical solution, Navier method is used to solve the governing equations for simply supported porous FG beams. Numerical results of the present theory for the free vibration of FG beams resting on elastic foundations are presented and compared to existing solutions in the literature. A parametric study will be detailed to investigate the effects of several parameters such as gradient index, thickness ratio, porosity factor and foundation parameters on the frequency response of porous FG beams.

Isogeometric Analysis of Electrostatic Adhesive Forces in Two-Dimensional Curved Electrodes (2차원 곡면형 전극에서 정전기 흡착력의 아이소-지오메트릭 해석)

  • Oh, Myung-Hoon;Kim, Jae-Hyun;Kim, Hyun-Seok;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.199-204
    • /
    • 2021
  • In this study, an isogoemetric analysis (IGA) method that uses NURBS (Non-Uniform Rational B-Spline) basis functions in computer-aided design (CAD) systems is employed to account for the geometric exactness of curved electrodes constituting an electro-adhesive pad in electrostatic problems. The IGA is advantageous for obtaining precise normal vectors when computing the electro-adhesive forces on curved surfaces. By performing parametric studies using numerical examples, we demonstrate the superior performance of the curved electrodes, which is attributed to the increase in the normal component of the electro-adhesive forces. In addition, concave curved electrodes exhibit better performance than their convex counterparts.

A Process of Optimization for the Best Orientation of Building Façades Based on the Genetic Algorithm by Utilizing Digital Topographic Map Data (수치지형도 데이터를 활용한 유전자 알고리즘 기반 건축외피의 최적향 산정 프로세스)

  • Choe, Seung-Ju;Han, Seung-Hoon
    • Land and Housing Review
    • /
    • v.13 no.1
    • /
    • pp.113-129
    • /
    • 2022
  • A building's eco-friendliness is directly related to various values including the life cycle cost of a building. However, the conventional architectural design method has a limitation in that it cannot create an optimized case according to the surrounding environmental conditions. Therefore, the purpose of this research is to present a design assistance tool that can review planning cases optimized for the environmental conditions of the building site in the planning stage of architectural production. To achieve the purpose of the study, an algorithm for realizing 3D modeling of the region and analysis of the solar environment was produced based on the site contours, building, and road information from the digital topographic map provided by the National Geographic Information Institute. To examine the validity of the developed algorithm, a comparative experiment was conducted targeting the elevation direction of the existing building. As a result, it was found that the optimal elevation direction selected by the algorithm can receive higher insolation compared to the front facade of the main building.