• Title/Summary/Keyword: Parametric Optimization

Search Result 361, Processing Time 0.031 seconds

A Translator for Parametrized Building Component Interoperability among Open BIM Support Software (개방형 BIM 지원 소프트웨어간 파라메트릭 건축부재 정보의 호환성 향상을 위한 변환기)

  • Kim, In-Han;Lee, Ji-Ah;Park, Seung-Hwa
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.6
    • /
    • pp.467-475
    • /
    • 2010
  • Due to the needs of design optimization and productivity for modernized Korean traditional house, standardization of Korean traditional building components is proceeding by BIM (Building Information Modeling). Currently, most of BIM software support object-based parametric modeling. By means of parameterized Korean traditional building components, the shape and assembly relation can be controlled. Although IFC(ISO/PAS 16739), which is an international standard in the AEC field, has been developed for information exchange among BIM software, IFC and other existing common data formats cannot be exchangeable parametric information. For the exchangeable parametric information within IFC, the authors defined meta-data by using Pset(Property-Set). The authors analyzed results about interoperability test in Revit $Architecture^{TM}$, $ArchiCAD^{TM}$ and Digital $Project^{TM}$. In order to solve found problems, the authors developed a translator to improve interoperability among BIM software.

Parametric 3D elastic solutions of beams involved in frame structures

  • Bordeu, Felipe;Ghnatios, Chady;Boulze, Daniel;Carles, Beatrice;Sireude, Damien;Leygue, Adrien;Chinesta, Francisco
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.233-248
    • /
    • 2015
  • Frame structures have been traditionally represented as an assembling of components, these last described within the beam theory framework. In the case of frames involving complex components in which classical beam theory could fail, 3D descriptions seem the only valid route for performing accurate enough analyses. In this work we propose a framework for frame structure analyses that proceeds by assembling the condensed parametric rigidity matrices associated with the elementary beams composing the beams involved in the frame structure. This approach allows a macroscopic analysis in which only the condensed degrees of freedom at the elementary beams interfaces are considered, while fine 3D parametric descriptions are retained for local analyses.

Optimization of Fuzzy Set Fuzzy Model by Means of Hierarchical Fair Competition-based Parallel Genetic Algorithms (계층적 경쟁기반 병렬 유전자 알고리즘을 이용한 퍼지집합 퍼지모델의 최적화)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2097-2098
    • /
    • 2006
  • In this study, we introduce the hybrid optimization of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA). HFCGA is a kind of multi-populations of Parallel Genetic Algorithms(PGA), and it is used for structure optimization and parameter identification of fuzzy set model. It concerns the fuzzy model-related parameters as the number of input variables, a collection of specific subset of input variables, the number of membership functions, and the apexes of the membership function. In the hybrid optimization process, two general optimization mechanisms are explored. The structural optimization is realized via HFCGA method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods.

  • PDF

A Study on the Shape Optimization of a Cutout Using Evolutionary Structural Optimization Method (진화 구조 최적화 기법을 이용한 개구부의 형상 최적화에 관한 연구)

  • 류충현;이영신
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.369-372
    • /
    • 2000
  • ESO(Evolutionary Structural Optimization) method is known that elements involved low stress value are removed from the previous model or that elements are added around elements involved high stress level on it and then the optimized model is obtained with required weight. Rejection ratio/addition ratio and evolutionary ratio are predefined and elements having lower/higher stress than reference stress, which average Mises stress on edge elements times rejection ratio, are deleted/added. In this study, when the plate having a cutout is subjected various in-plane load, a cutout shape is optimized using ESO method. ANSYS is used to analyse a finite element model and optimization procedure is made by APDL (ANSYS Parametric Design Language). ESO method is useful in rather than a complex structure optimization as well as a cutout shape optimization.

  • PDF

Shape Design of Passages for Turbine Blade Using Design Optimization System (최적화설계시스템을 이용한 터빈블레이드 냉각통로의 형상설계)

  • Jeong Min-Joong;Lee Joon-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.1013-1021
    • /
    • 2005
  • In this paper, we developed an automatic design optimization system for parametric shape optimization of cooling passages inside axial turbine blades. A parallel three-dimensional thermoelasticity finite element analysis code from an open source system was used to perform automatic thermal and stress analysis of different blade configuration. The developed code was connected to an evolutionary optimizer and built in a design optimization system. Using the optimization system, 279 feasible and optimal solutions were searched. It is provided not only one best solution of the searched solutions, but also information of variation structure and correlation of the 279 solutions in function, variable, and real design spaces. To explore design information, it is proposed a new interpretation approach based on evolutionary clustering and principal component analysis. The interpretation approach might be applicable to the increasing demands in the general area of design optimization.

A Method using Parametric Approach for Constrained Optimization and its Application to a System of Structural Optimization Problems (제약을 갖는 최적화문제에 대한 파라메트릭 접근법과 구조문제의 최적화에 대한 응용)

  • Yang, Y.J.;Kim, W.S.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.15 no.1
    • /
    • pp.73-82
    • /
    • 1990
  • This paper describes two algorithms to Nonlinear programming problems with equality constraints and with equality and inequality constraints. The first method treats nonlinear programming problems with equality constraints. Utilizing the nonlinear programming problems with equality constraints. Utilizing the nonlinear parametric programming technique, the method solves the problem by imbedding it into a suitable one-parameter family of problems. The second method is to solve a nonlinear programming problem with equality and inequality constraints, by minimizing a square sum of nonlinear functions which is derived from the Kuhn-Tucker condition.

  • PDF

Nose Shape Optimization of the High-speed Train to Reduce the Micro-pressure Wave (미기압파 저감을 위한 고속전철 전두부형상의 최적화설계)

  • 권혁빈;이관중;이동호
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.506-513
    • /
    • 2000
  • The tunnel booming noise generated by a train moving into a tunnel has been one of the most serious constraints in the development of the high-speed trains. It is well known that the nose shape of the train has the significant influence on the intensity of the booming noise. In this study, the nose shape has been optimized by using the response surface methodology and the axi-symmetric compressible Euler equations. The parametric studies are also performed with respect to the slenderness ratio, the blockage ratio and the train speed to investigate their sensitivities to the optimization results. The results show that it is possible to define more general design space by introducing the Hicks-Henne shape functions, resulting in the more effective nose shape than that of Maeda. The mechanism and the aspects of the train-tunnel interaction were also investigated from the results of the parametric study.

  • PDF

Robust compensator design for parametric uncertain systems by separated optimizations (분리최적화 기법을 이용한 강인제어기 설계)

  • 김경수;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.589-592
    • /
    • 1996
  • It is well known that robust compensators designed by the block-diagonal Lyapunov function approaches are conservative while they are popular in practice because of their computational easiness. In this note, we develop a systematized version of conventional block-diagonal Lyapunov function approaches by deriving two separated optimizations based on the guaranteed cost control method. The proposed method generates reasonable robust compensators in practice.

  • PDF

A Novel Parametric Identification Method Using a Dynamic Encoding Algorithm for Searches (DEAS)

  • Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.45.6-45
    • /
    • 2002
  • In this paper, a novel optimization algorithm which searches for the local minima of a given cost function is proposed using the familiar property of a binary string, and is applied to the parametric identification of a continuous-time state equation by the estimation of system parameters as well as initial state values. A simple electrical circuit severs as an example, whose precise identification results show the superiority of the proposed algorithm.

  • PDF

A Study on the Skirt Size Selection of a Composite Pressure Vessel using Optimum Analysis Technique (최적화 해석 기법을 이용한 복합재 압력용기의 스커트 치수 선정에 관한 연구)

  • Kim, Jun-Hwan;Jeon, Kwang-Woo;Shin, Kwang-Bok;Hwang, Tae-Kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.403-407
    • /
    • 2012
  • The purpose of this study is to find the optimum skirt size for a composite pressure vessel using optimum analysis technique. The size optimization for skirt shape of a composite pressure vessel was conducted using sub-problem approximation method and batch processing codes programmed by APDL(ANSYS Parametric Design Language). The thickness and length of skirt part were selected as design variables for the optimum analysis. The objective function and constraints were chosen as weight and displacement of skirt part, respectively. The numerical results showed that the weight of skirt of a composite pressure vessel would be saved by maximum 4.38% through the size optimization analysis for the skirt shape.

  • PDF