Browse > Article
http://dx.doi.org/10.12989/aas.2015.2.3.233

Parametric 3D elastic solutions of beams involved in frame structures  

Bordeu, Felipe (GeM UMR CNRS-Centrale Nantes)
Ghnatios, Chady (GeM UMR CNRS-Centrale Nantes)
Boulze, Daniel (AEROLIA)
Carles, Beatrice (AEROLIA)
Sireude, Damien (AEROLIA)
Leygue, Adrien (GeM UMR CNRS-Centrale Nantes)
Chinesta, Francisco (GeM UMR CNRS-Centrale Nantes)
Publication Information
Advances in aircraft and spacecraft science / v.2, no.3, 2015 , pp. 233-248 More about this Journal
Abstract
Frame structures have been traditionally represented as an assembling of components, these last described within the beam theory framework. In the case of frames involving complex components in which classical beam theory could fail, 3D descriptions seem the only valid route for performing accurate enough analyses. In this work we propose a framework for frame structure analyses that proceeds by assembling the condensed parametric rigidity matrices associated with the elementary beams composing the beams involved in the frame structure. This approach allows a macroscopic analysis in which only the condensed degrees of freedom at the elementary beams interfaces are considered, while fine 3D parametric descriptions are retained for local analyses.
Keywords
PGD; parametric solutions; model reduction; frame structures; shape optimization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ammar. A., Mokdad. B., Chinesta. F. and Keunings. R. (2006), "Anew family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids", J. Non-Newton. Fluid Mech., 139, 153-176.   DOI
2 Ammar. A., Chinesta. F., Diez, P. and Huerta, A. (2010), "An estimator for separated representations of highly multidimensional models", Comput. Meth. Appl. Mech. Eng., 199, 1872-1880.   DOI
3 Ammar. A. Huerta, A., Chinesta, F., Cueto, E. and Leygue, A. (2014), "Parametric solutions involving geometry: a step towards efficient shape optimization", Comput. Meth. Appl. Mech. Eng., 268, 178-193.   DOI
4 Bognet, B., Leygue, A., Chinesta, F., Poitou, A. and Bordeu, F. (2012), "Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity", Comput. Meth. Appl. Mech. Eng., 201, 1-12.
5 Bognet, B., Leygue, A. and Chinesta, F. (2014), "Separated representations of 3D elastic solutions in shell geometries", Adv. Model. Simul. Eng. Sci., 1(1), 1-34.   DOI
6 Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140.   DOI
7 Carrera, E. (2003), "Historical review of Zig-Zag theories for multilayered plates and shells", Appl. Mech. Rev., 56(3), 287.   DOI
8 Carrera, E. (2003), "Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Meth. Eng., 10(3), 215-296.   DOI
9 Chinesta, F., Ammar, A. and Cueto, E. (2010), " Recent advances and new challenges in the use of the Proper Generalized Decomposition for solving multidimensional models", Arch. Comput. Meth. Eng., 17, 327-350.   DOI
10 Chinesta, F., Ammar, A., Leygue, A. and Keunings, R. (2011), "An overview of the Proper Generalized Decomposition with applications in computational rheology", J. Non-Newton. Fluid Mech., 166, 578-592.   DOI   ScienceOn
11 Chinesta, F., Ladeveze, P. and Cueto, E. (2011), "A short review in model order reduction based on Proper Generalized Decomposition", Arch. Comput. Meth. Eng., 18, 395-404.   DOI
12 Chinesta, F., Leygue, A., Bognet, B., Ghnatios, Ch., Poulhaon, F., Bordeu, F., Barasinski, A., Poitou, A., Chatel, S. and Maison-Le-Poec, S. (2012). "First steps towards an advanced simulation of composites manufacturing by automated tape placement", Int J. Mater. Form. 7(1), 81-92.   DOI
13 Chinesta, F., Leygue, A., Bordeu, F., Aguado, J.V., Cueto, E., Gonzalez, D., Alfaro, I., Ammar, A. and Huerta, A. (2013), "Parametric PGD based computational vademecum for efficient design, optimization and control", Arch. Comput. Meth. Eng., 20, 31-59.   DOI
14 Chinesta, F., Keunings, R., Leygue, A. (2014), The Proper Generalized Decomposition for Advanced Numerical Simulations, A Primer, Springerbriefs, Springer.
15 Ghnatios, Ch., Chinesta, F. and Binetruy, Ch. (2015), "The squeeze flow of composite laminates", International Journal of Material Forming. (in Press)
16 Hochard, Ch., Ladeveze, P. and Proslier L. (1993), "A simplified analysis of elastic structures", Eur. J. Mech. A/Solid., 12(4), 509-535.
17 Kratzig, W.B. and Jun, D. (2002), "Multi-layer multi-director concepts for D-adaptivity in shell theory", Comput. Struct., 80(9), 719-734.   DOI
18 Leygue, A., Chinesta, F., Beringhier, M., Nguyen, T.L., Grandidier, J.C., Pasavento, F. and Schrefler, B. (2013), "Towards a framework for non-linear thermal models in shell domains", lnt. J. Numer: Meth. Heat Fluid Flow, 23, 55-73.   DOI
19 Ladeveze, P. (1999), "Nonlinear Computational Structural Mechanics - New Approaches and Non-IncrementalMethods of Clculation, Springer, Berlin.
20 Ladeveze, P., Arnaud, L., Rouch, P. and Blanz, C. (2001), "The variational theory of complex rays for the calculation of medium-frequency vibrations", Eng. Comput., 18(1-2), 193-221.   DOI
21 Naceur, H., Shiri, S., Coutellier, D. and Batoz, J.L. (2013), "On the modeling and design of composite multilayered structures using solid-shell finite element model", Finite Elem. Anal. Des., 70, 1-14.
22 Nazeer, M., Bordeu, F., Leygue, A. and F. Chinesta, F. (2014), "Arlequin based PGD domain decomposition", Comput. Mech., 54(5), 1175-1190.   DOI
23 Niroomandi, S., Gonzalez, D., Alfaro, I., Bordeu, F., Leygue, A., Cueto, E. and Chinesta, F. (2013), "Real time simulation of biological soft tissues : A PGD approach", lnt. J. Numer. Meth. Biomed. Eng., 29(5), 586-600.   DOI
24 Qatu, M.S. (2012), "Review of recent literature on static analyses of composite shells: 2000-2010", Open J. Compos. Mater., 2(3), 61-86.   DOI
25 Reddy, J.N. and Arciniega, R.A. (2004), "Shear deformation plate and shell theories: from Stavsky to present", Mech. Adv. Mater. Struct., 11(6), 535-582.   DOI
26 Sedira, L., Ayad, R., Sabhi, H., Hecini, M. and Sakami, S. (2012), "An enhanced discrete Mindlin finite element model using a zigzag function", Euro. J. Comput. Mech., 21(1-2), 122-140.
27 Timoshenko, S.P. (1955), Strength of Materials, Van Nostrand.
28 Trinh, V.D., Abed-Meraim, F. and Combescure, A. (2011), "A new assurned strain solid-shell formulation "SHB6" for the six-node prismatic finite element", J. Mech. Sci. Tech., 25(9), 2345-2364.   DOI   ScienceOn
29 Timoshenko, S.P. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill.
30 Timoshenko, S.P. and Young, D.H. (1982), Theory of Structures, McGraw-Hill.
31 Vidal, P., Gallimard, L. and Polit, O. (2013), "Proper generalized decomposition and layer-wise approach for the modeling of composite plate structures", lnt. J. Solid. Struct., 50(14-15), 2239-2250.   DOI
32 Viola, E., Tornabene, F. and Fantuzzi, N. (2013), "Static analysis of completely doubly-curved laminated shells and panels using general higher-order shear deformation theories", Compos. Struct., 101, 59-93.   DOI
33 Zhang, Y.X. and Yang, C.H. (2009), "Recent developments in finite element analysis for laminated composite plates", Compos. Struct., 88(1), 147-157.   DOI   ScienceOn