• 제목/요약/키워드: Parametric Operation

검색결과 160건 처리시간 0.025초

Nano-Second Periodically Poled Lithium Niobate Optical Parametric Oscillator with Planar Cavity Mirrors

  • Kim, Hong-Ki;Rhee, Bum--Ku
    • Journal of the Optical Society of Korea
    • /
    • 제5권4호
    • /
    • pp.136-139
    • /
    • 2001
  • We investigated a high-output ower, periodically poled lithium niobate(PPLN) optical parametric oscillator(OPO) pumped by a Q-switched Nd:YAG laser. Given the low optical damage threshold and the limited aperture (0.5mm thick) of PPLN, we tried to maximize the signal output power in a linear cavity consisting of two flat mirrors with a loosely focused pump beam. It is found that this simple cavity structure allowed a robust OPO operation, which was not sensitive to alignment compared with the conventional ones using concave mirrors. A maximum energy of 100$\mu$J/pulse was achieved for the signal at 1.36${\mu}{\textrm}{m}$, while the oscillation threshold was 0.3 mJ/pulse for the pump at 1064 nm.

열차풍 효과가 고속열차 주행안정성에 미치는 파라메타 연구 (Parametric Study of the Effects of Train Wind on Running Stability)

  • 남성원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2519-2523
    • /
    • 2008
  • When constructing a high-speed railroad, the reduction of the distance between track centers and the width of track bed will save the construction cost. However the shortening the distance between track centers may cause the stability problems due to higher wind pressure. Therefore the extensive technical review and aerodynamical study should be performed to determine the adequate distance between track centers. In this study, the impact that the increase in wind pressure due to the change of aerodynamic phenomena with the change of the distance between track centers may have on two trains passing by each other was predicted, and the stability of train operation was analyzed in order to review the distance between track centers suitable to Honam HSR trains. We conducted the parametric study of the effects of train wind on the running stability.

  • PDF

Parametric Study of Offshore Pipeline Wall Thickness by DNV-OS-F101, 2010

  • Choi, Han-Suk;Yu, Su-Young;Kang, Dae-Hoon;Kang, Hyo-Dong
    • 한국해양공학회지
    • /
    • 제26권2호
    • /
    • pp.1-7
    • /
    • 2012
  • DNV-OS-F101 includes the concept development, design, construction, operation,and abandonment of offshore pipeline systems. The main objective of this offshore standard (OS) is to ensure that pipeline systems are safe during the installation and operational period. The pipeline design philosophy also includes public safety and environmental protection. The mechanical wall thickness design of a pipeline shall follow the design objectives and safety philosophy. This new design code includes a very sophisticated design procedure to ensure a safe pipeline, public safety, and environmental protection. This paper presents the results of a parametric study for the wall thickness design of offshore pipelines. A design matrix was developed to cover the many design factors of pipeline integrity, public safety, and environmental protection. Sensitivity analyses of the various parameters were carried out to identify the impacts on offshore pipeline design.

Slider-Bearing Design with Micro-Machined Wavy-Cavity: Parametric Characterization of Thermohydrodynamic-Operation-Scheme

  • Ozalp B. Turker;Ozalp A. Alper
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1590-1606
    • /
    • 2006
  • Slider bearings are widely applied in mechanical systems, where the design needs cover increased load capacity, lowered friction and power consumption and creative designs. This work is governed to perform a parametric characterization, by generating a novel structure on the upper slider surface, which can formally be expressed in micro-machined wavy-form, where the individual and combined influences of various structural design parameters and boundary conditions, on the performance records, are also evaluated. Computations put forward that the contribution of the wave amplitude on power loss values is highly dependent on the level of inlet pressure; higher amplitudes are determined to increase power loss in the lowest inlet pressure case of 1.01, whereas the contrary outcome is determined in the higher inlet pressure cases of 3.01 & 5.01. Designing the slider bearing system, based on optimal load capacity, produced the optimum wave number ranges as 10-45, 7-11 and 5-8 for the pad inclinations of $5^{\circ},\;4^{\circ}$ and $3^{\circ}$ respectively.

최적설계를 위한 상용프로그램의 통합에 대한 연구 (A Study on the Integration of Commercial Codes for Structural Optimal Design)

  • 신정호;곽병만;곽기성;한영근
    • 한국군사과학기술학회지
    • /
    • 제2권2호
    • /
    • pp.209-217
    • /
    • 1999
  • In this paper, an integrated S/W system from CAD to optimal design has been suggested and an application to a precision machine tool structure shown. The integrated system is so designed to reduce manual interfacing effort. An object-oriented programming language is used for combining 3-D CAD program, FEM and optimal design tools. In this system parametric modelling technique is applied and users can get the optimum design iteratively without much user intervention. The CAD model is automatically updated when the design parameters are transferred back to the CAD program. Not only design time can be dramatically reduced but unnecessary operation errors avoided by the integration.

  • PDF

드릴링 작업의 모델링과 진단법에 관한 연구 (A Study on the Modeling and Diagnostics in Drilling Operation)

  • 윤문철
    • 동력기계공학회지
    • /
    • 제2권2호
    • /
    • pp.73-80
    • /
    • 1998
  • The identification of drilling joint dynamics which consists of drilling and structural dynamics and the on-line time series detection of malfunction process is substantial not only for the investigation of the static and dynamic characteristics but also for the analytic realization of diagnostic and control systems in drilling. Therefore, We have discussed on the comparative assessment of two recursive time series modeling algorithms that can represent the drilling operation and detect the abnormal geometric behaviors in precision roundshape machining such as turning, drilling and boring in precision diemaking. For this purpose, simulation and experimental work were performed to show the malfunctional behaviors for drilling operation. For this purpose, a new two recursive approach (Recursive Extended Instrument Variable Method : REIVM, Recursive Least Square Method : RLSM) may be adopted for the on-line system identification and monitoring of a malfunction behavior of drilling process, such as chipping, wear, chatter and hole lobe waviness.

  • PDF

차동 차이 증폭기를 이용한 새로운 파라메터 측정기 (PMU) 설계 (A New PMU (parametric measurement unit) Design with Differential Difference Amplifier)

  • 안경찬;강희진;박창범;임신일
    • 한국산업정보학회논문지
    • /
    • 제21권1호
    • /
    • pp.61-70
    • /
    • 2016
  • 본 논문은 자동 시험 장비(ATE : automatic test equipment)를 위한 새로운 파라메터 측정기(PMU : parametric measurement unit) 설계 기술을 설명한다. 기존의 설계는 피 시험 소자(DUT : device under test)에 신호를 인가하기 위해 두 개 혹은 그 이상의 증폭기를 사용하지만, 본 연구에서는 오직 하나의 차동 차이 증폭기(DDA : differential difference amplifier)를 사용한다. 제안된 기술은 귀환 경로에 추가적인 증폭기가 필요하지 않기 때문에, PMU는 안정적인 동작을 보장한다. 또한 DUT의 응답 신호를 측정하기 위한 기존의 계측 증폭기(IA : instrument amplifier)가 3개의 증폭기와 다수의 저항을 사용하는 것에 반해, 제안된 기술은 오직하나의 DDA를 IA로 적용했다. DDA는 전 범위의 차동 신호를 다루기 위해 두 개의 rail-to-rail 차동 입력 단을 적용하였다. 100 dB의 개 루프 이득을 얻기 위해 folded-cascode 형태의 DDA 안에 추가적인 이득 증가 기술이 사용되었다. 제안된 PMU 설계는 더 작은 면적과 더 적은 전력 소모를 가지고 정확하고 안정적인 동작을 가능하게 한다. PMU는 0.18 um CMOS 공정으로 구현되었고 공급 전압은 1.8 V이다. 입력 범위는 전압인가 시 0.25~1.55 V이고, 전류인가 시 0.9~0.935 V이다.

Heat transfer analysis in sub-channels of rod bundle geometry with supercritical water

  • Shitsi, Edward;Debrah, Seth Kofi;Chabi, Silas;Arthur, Emmanuel Maurice;Baidoo, Isaac Kwasi
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.842-848
    • /
    • 2022
  • Parametric studies of heat transfer and fluid flow are very important research of interest because the design and operation of fluid flow and heat transfer systems are guided by these parametric studies. The safety of the system operation and system optimization can be determined by decreasing or increasing particular fluid flow and heat transfer parameter while keeping other parameters constant. The parameters that can be varied in order to determine safe and optimized system include system pressure, mass flow rate, heat flux and coolant inlet temperature among other parameters. The fluid flow and heat transfer systems can also be enhanced by the presence of or without the presence of particular effects including gravity effect among others. The advanced Generation IV reactors to be deployed for large electricity production, have proven to be more thermally efficient (approximately 45% thermal efficiency) than the current light water reactors with a thermal efficiency of approximately 33 ℃. SCWR is one of the Generation IV reactors intended for electricity generation. High Performance Light Water Reactor (HPLWR) is a SCWR type which is under consideration in this study. One-eighth of a proposed fuel assembly design for HPLWR consisting of 7 fuel/rod bundles with 9 coolant sub-channels was the geometry considered in this study to examine the effects of system pressure and mass flow rate on wall and fluid temperatures. Gravity effect on wall and fluid temperatures were also examined on this one-eighth fuel assembly geometry. Computational Fluid Dynamics (CFD) code, STAR-CCM+, was used to obtain the results of the numerical simulations. Based on the parametric analysis carried out, sub-channel 4 performed better in terms of heat transfer because temperatures predicted in sub-channel 9 (corner subchannel) were higher than the ones obtained in sub-channel 4 (central sub-channel). The influence of system mass flow rate, pressure and gravity seem similar in both sub-channels 4 and 9 with temperature distributions higher in sub-channel 9 than in sub-channel 4. In most of the cases considered, temperature distributions (for both fluid and wall) obtained at 25 MPa are higher than those obtained at 23 MPa, temperature distributions obtained at 601.2 kg/h are higher than those obtained at 561.2 kg/h, and temperature distributions obtained without gravity effect are higher than those obtained with gravity effect. The results show that effects of system pressure, mass flowrate and gravity on fluid flow and heat transfer are significant and therefore parametric studies need to be performed to determine safe and optimum operating conditions of fluid flow and heat transfer systems.

최적전원차성을 위한 절감 시뮬레이션 방법의 개발 (The Development of the Simplified Simulation Technique for the Best Generation Mix)

  • 송길영;최재석
    • 대한전기학회논문지
    • /
    • 제37권6호
    • /
    • pp.339-349
    • /
    • 1988
  • The simplified simulation technique for the best generation mix is developed and the studied results are described. The best generation mix over study time from the economic point of view can be easily constructed by this technique. Generator maintenance, the operation of pumpgenerator and LNG thermal generator with limited energy are simulated variously, so a role of each generator is also easily evaluated. Through parametric analysis, useful planning guide points are obtained for the best generation mix transition, nuclear power plant construction cost, ruanium cost , oil cost, coal cost and midnight factor in the study case corresponding to real power system size model.

  • PDF

중등학교 교실의 이산화탄소(CO2) 관리를 위한 지능형 창호개폐 작동 프로세스 (Intelligent and Responsive Window Opening-Closing Operation Process for Carbon Dioxide(CO2) Management of Secondary School Classroom)

  • 최윤영;이현수
    • 교육시설 논문지
    • /
    • 제25권4호
    • /
    • pp.19-30
    • /
    • 2018
  • The school classroom is a common living place where students spend 7 to 14 hours a day to prepare for their careers. Therefore, if the ventilation of the classroom is not properly performed, it may lead to the deterioration of learning ability due to the unclear air. The concentration of carbon dioxide in the classroom is reported to be high, and the increase in carbon dioxide concentration has a negative effect on the learner's academic performance. In this context, the purpose of this study is to propose a methodology for intelligent and responsive window opening-closing operation process that can reduce the concentration of $CO_2$ in the classroom in order to build a support space that can create an effective teaching-learning environment for adolescents. The specific objectives are as follows. First of all, we define the concept of window opening-closing operation. Secondly, twe develop the operation process of window opening-closing. Thirdly, we develop an algorithm for real-time window opening and closing (process) (Window Opening-Closing Operation Process). Finally, we verify the intelligent responsive window opening-closing operation process through developing examples of window opening-closing operation process using the parametric design program. This study is a preliminary study to develop algorithms necessary for window opening-closing operation. Based on the first-order algorithm, We simulated window opening-closing operations according to a hypothetical scenario. As a result, This study can show that the window is open and close depending on the $CO_2$ concentration, but the $CO_2$ concentration in the room is higher than outdoors. Consequentially, we suggest that it is necessary to develop an algorithm to supplement these results because window is often not working when the temperature difference between indoor and outdoor in winter is large.