• 제목/요약/키워드: Parametric Model

검색결과 2,275건 처리시간 0.032초

Parametric Model을 이용한 InAsxP1-x 박막의 유전함수 연구

  • 변준석;최준호;;;김영동
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.333-333
    • /
    • 2012
  • III-V 족 화합물 반도체 물질인 $InAs_xP_{1-x}$는 다양한 광전자 소자와 빠른 속도의 전자 소자로써의 사용 가능성으로 각광받고 있다. 이러한 $InAs_xP_{1-x}$를 소자 제작에 이용하기 위해서는 임의의 As 함량에 따른 InAsP 물질의 정확한 광학적 특성 분석이 필요하다. 따라서 본 연구에서는 1.5~6.0 eV 에너지 구간에서 $InAs_xP_{1-x}$ ($0{\leq}{\times}{\leq}1$) 화합물의 임의의 As 함량에 따른 유전함수를 보고하고자 한다. MBE (molecular beam epitaxy)를 이용하여 InP 기판 위에 성장시킨 $InAs_xP_{1-x}$ (x = 0.000, 0.13, 0.40, 0.60, 0.80, 1.000) 박막을 타원편광분석법을 이용하여 측정하였고, 이 때 화학적 에칭을 통해 산화막 층을 제거하여 순수한 유전함수 ${\varepsilon}$을 얻을 수 있었다. 측정된 유전함수 분석은 parametric 모델을 이용하였으며, parametric 모델은 Gaussian-broadened polynomial들의 합으로서 반도체 물질의 유전함수를 정확히 기술하는 분석법이다. Parametric 모델을 통해 얻어진 각각의 변수들을 As 조성비 x에 대한 다항식으로 피팅하였고, 그 결과 임의의 조성비에 대한 $InAs_xP_{1-x}$ ($0{\leq}{times}{\leq}1$)의 유전함수를 얻어낼 수 있었다. 본 연구 결과는 물질의 실시간 성장 모니터링이나 다층구조 분석, 광소자의 제작 등에 유용한 정보로 이용될 수 있을 것이다.

  • PDF

실물옵션 적용을 위한 산업별 기초자산 확률과정추정 (Identification of the Movement of Underlying Asset in Real Option Analysis: Studies on Industrial Parametric Table)

  • 이정동;강아리;정종욱
    • 기술경영경제학회:학술대회논문집
    • /
    • 기술경영경제학회 2004년도 제24회 동계학술대회 논문집
    • /
    • pp.222-245
    • /
    • 2004
  • This paper has an intention of proposing useful parametric tables of each industry group within Korea. These parametric tables can be insightful criteria for those who are dealing with the exact valuation of company, technology or industry through Real Option Analysis (ROA) since the identification of the movement of underlying asset is the very first step to be done. To give the exact estimations of parameters and the most preferred model in each industry group, we cover topics on ROA, stochastic process, and parametric estimation method like Generalized Method of Moments (GMM) and Maximum Likelihood Estimation (MLE). Additionally, specific industry groups, such as, Internet service group and mobile telecommunication service group defined independently in this paper are also examined in terms of its property of movement with the suggesting of the most fitting stochastic model.

  • PDF

RC 교각의 3차원 매개변수 모델링 및 비선형 구조해석 입력 데이터 생성 모듈 구축 (3D Parametric Modeling of RC Piers and Development of Data Generation Module for a Structural Analysis with 3D Model of RC Piers)

  • 손유진;신원철;이상철;이헌민;신현목
    • 한국BIM학회 논문집
    • /
    • 제3권3호
    • /
    • pp.19-28
    • /
    • 2013
  • In Korea highway bridges, most piers are the type of one-column or multi-column ones. So, in this study, under an environment applying BIM so fast, to activate researches on two-column piers subjected to bidirectional seismic loading, a 3D parametric modeling method was selected when the model of two-column piers and one-column piers were formed. Also, interface module between input data in structural analysis and 3D model of RC pier was developed. The module can create the input data for non-linear structural analysis like material, geometric properties and additional coefficients.

충격파-와동 간섭의 파라메터 연구 (Parametric Study on Shock-Vortex Interaction)

  • 장근식;장세명
    • 대한기계학회논문집B
    • /
    • 제29권8호
    • /
    • pp.921-926
    • /
    • 2005
  • In the idealized model problem of the interaction between a planar travelling shock and a symmetric vortex, the physics of shock distortion and quadrupole sound generation are well known to many researchers. However, the authors have distinguished the weak waves reflected and transmitted by the complicated photograph images obtained from a shock tube experiment. In this paper, we introduces a parametric study based on Navier-Stokes simulation and Rankin vortex model to see the difference of shock deformation shapes. Four combination of the strength of shock and vortex are respectively selected from a parameter plane of shock and vortex strength extended to the strong vortex region. The result shows clearly discernable wave morphology for the main parameters, which is not yet explicitly mentioned by other researchers.

파라메트릭 배열을 이용한 해저지층 탐사 알고리즘 (Sub-bottom Profiling Algorithm using Parametric Array)

  • 이종현;이재일;배진호
    • 한국해양공학회지
    • /
    • 제28권1호
    • /
    • pp.55-63
    • /
    • 2014
  • In this paper, we propose an threshold-based Schur algorithm for estimating the media characteristics of sub-bottom multi-layers by using the signal generated by a parametric array transducer. We use the KZK model to generate a parametric array signal, and use the proposed threshold-based Schur algorithm for estimating the reflection coefficients of multiple sea bottom layers. Using computer simulation, we verify that the difference frequency component generated by the KZK model prevails over the signals of primary frequencies at long range. For the simulation, we use the transmit signal generated by the KZK and the reflected signal obtained from a lattice filter model for the seawater and sub-bottom of multi-level non-homogeneous layers. Through the simulation, we verify that the proposed threshold-based Schur algorithm can give much more accurate and efficient estimates of the reflection coefficients than methods using received signal, matched filter output signal, and normal Schur algorithm output.

Determining a BMDL of Blood Lead Based on ADHD Scores Using a Semi-Parametric Regression

  • Kim, Ah-Hyoun;Ha, Min-A;Kim, Byung-Soo
    • 응용통계연구
    • /
    • 제25권3호
    • /
    • pp.389-401
    • /
    • 2012
  • This paper derives a benchmark dose(BMD) and its 95% lower confidence limit(BMDL) using a semi-parametric regression model for small lead based changes in attention-deficit hyperactivity disorder(ADHD) scores in the first wave of the Children's Health and Environment Research(CHEER) survey data, which have been regularly collected in South Korea since 2005. Ha et al. (2009) showed that the appearance of ADHD symptoms had a borderline trend of increasing with the blood lead concentration. Butdz-J${\o}$rgensen (EFSA, 2010a) derived the BMDL of lead corresponding to a benchmark region of 1 full intelligent quotient (IQ) score using the raw data in Lanphear et al. (2005, EHP). European Food Safety Authority (EFSA, 2010b) determined the BMDL of $1.2{\mu}g/dl$ as a reference point for the characterization of lead when assessing the risk of the intellectual deficit measured by IQ scores. Kim et al. (2011) indicated that an even lower BMDL could be obtained based on the ADHD score; however, the BMDLs depended heavily upon the model assumptions. We show in this paper that a semi-parametric approach resolves the model dependence of BMDLs.

Development of a Physics-Based Design Framework for Aircraft Design using Parametric Modeling

  • Hong, Danbi;Park, Kook Jin;Kim, Seung Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권3호
    • /
    • pp.370-379
    • /
    • 2015
  • Handling constantly evolving configurations of aircraft can be inefficient and frustrating to design engineers, especially true in the early design phase when many design parameters are changeable throughout trade-off studies. In this paper, a physics-based design framework using parametric modeling is introduced, which is designated as DIAMOND/AIRCRAFT and developed for structural design of transport aircraft in the conceptual and preliminary design phase. DIAMOND/AIRCRAFT can relieve the burden of labor-intensive and time-consuming configuration changes with powerful parametric modeling techniques that can manipulate ever-changing geometric parameters for external layout of design alternatives. Furthermore, the design framework is capable of generating FE model in an automated fashion based on the internal structural layout, basically a set of design parameters describing the structural members in terms of their physical properties such as location, spacing and quantities. The design framework performs structural sizing using the FE model including both primary and secondary structural levels. This physics-based approach improves the accuracy of weight estimation significantly as compared with empirical methods. In this study, combining a physics-based model with parameter modeling techniques delivers a high-fidelity design framework, remarkably expediting otherwise slow and tedious design process of the early design phase.

선삭가공으로 제작되는 나사형상의 3차원 파라메터릭 모델 (Parametric Modeling of a Screw Fabricated by Turning)

  • 김호찬;고태조
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.62-68
    • /
    • 2012
  • Geometry of a screw fabricated by a turning process determined by the shape of the tool, feed rate of the tool and rotation speed of the spindle. Therefore, computing the exact geometry of the screw is very important to perform a simulation on machining or an evaluation of the workpice quality. In this paper, a new mathematical geometry model of the 3 dimensional screw is fabricated by turning process introduced for the exact geometry computation. Becasue model has a parametric formulation, it is easy to process for a CAD geometry or apply for a machining simulation. Also, it can be applied to process planning because it gives precise machined geometry on whole the 3 dimensional surface of the screw. This paper introduces a new parametric model of a geometry for screw fabricated by turning process. As an application, a simulation software for the 3 dimensional screw surface is developed and evaluated for several manufacturing parameters.

Implementation of bond-slip effects on behaviour of slabs in structures

  • Mousavi, S.S.;Dehestani, M.
    • Computers and Concrete
    • /
    • 제16권2호
    • /
    • pp.311-327
    • /
    • 2015
  • Employing discrete elements for considering bond-slip effects in reinforced concrete structures is very time consuming. In this study, a new modified embedded element method is used to consider the bond-slip phenomenon in structural behavior of reinforced concrete structures. A comprehensive parametric study of RC slabs is performed to determine influence of different variables on structural behavior. The parametric study includes a set of simple models accompanied with complex models such as multi-storey buildings. The procedure includes the decrease in the effective stiffness of steel bar in the layered model. Validation of the proposed model with existing experimental results demonstrates that the model is capable of considering the bond-slip effects in embedded elements. Results demonstrate the significant effect of bond-slip on total behavior of structural members. Concrete characteristic strengths, steel yield stress, bar diameter, concrete coverage and reinforcement ratios are the parameters considered in the parametric study. Results revealed that the overall behavior of slab is significantly affected by bar diameter compared with other parameters. Variation of steel yield stress has insignificant impact in static response of RC slabs; however, its effect in cyclic behavior is important.

Shape optimization of corner recessed square tall building employing surrogate modelling

  • Arghyadip Das;Rajdip Paul;Sujit Kumar Dalui
    • Wind and Structures
    • /
    • 제36권2호
    • /
    • pp.105-120
    • /
    • 2023
  • The present study is performed to find the effect of corner recession on a square plan-shaped tall building. A series of numerical simulations have been carried out to find the two orthogonal wind force coefficients on various model configurations using Computational Fluid Dynamics (CFD). Numerical analyses are performed by using ANSYS-CFX (k-ℇ turbulence model) considering the length scale of 1:300. The study is performed for 0° to 360° wind angle of attack. The CFD data thus generated is utilised to fit parametric equations to predict alongwind and crosswind force coefficients, Cfx and Cfy. The precision of the parametric equations is validated by employing a wind tunnel study for the 40% corner recession model, and an excellent match is observed. Upon satisfactory validation, the parametric equations are further used to carry out multiobjective optimization considering two orthogonal force coefficients. Pareto optimal design results are presented to propose suitable percentages of corner recession for the study building. The optimization is based on reducing the alongwind and crosswind forces simultaneously to enhance the aerodynamic performance of the building.