• Title/Summary/Keyword: Parametric Error Modeling

Search Result 26, Processing Time 0.027 seconds

Motion Sensing Algorithm for SAR Image Using Pre-Parametric Error Modeling (매개변수 사전 오차 모델링 기법을 이용한 SAR 요동측정 알고리즘)

  • Park, Woo Jung;Park, Yong-gonjong;Lee, Soojeong;Park, Chan Gook;Song, Jong-Hwa;Bae, Chang Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.566-573
    • /
    • 2019
  • In order to obtain high-quality images by motion compensation in the airborne synthetic aperture radar (SAR), accurate motion sensing in image acquisition section is necessary. Especially, reducing relative position error and discontinuity in motion sensing is important. To overcome the problem, we propose a pre-parametric error modeling (P-PEM) algorithm which is a real-time motion sensing algorithm for the airborne SAR in this paper. P-PEM is an extended version of parametric error modeling (PEM) method which is a motion sensing algorithm to mitigate the errors in the previous work. PEM estimates polynomial coefficients of INS error which can be assumed as a polynomial in the short term. Otherwise, P-PEM estimates polynomial coefficients in advance and uses at image acquisition section. Simulation results show that the P-PEM reduces relative position error and discontinuity effectively in real-time.

Measurement Error Modeling for On-Machine Measurement of Sculptured Surfaces

  • Cho, Myeong-Woo;Lee, Se-Hee;Seo, Tae-Il
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.73-80
    • /
    • 2001
  • The objective of this research is to develop a measurement error model for sculptured surface in On-Machine Measurement(OMM) process based on a closed-loop configuration. The geometric error model of each axis of a vertical CNC machining center is derived using a 4$\times$4 homogeneous transformation matrix. The ideal locations of a touch-type probe for the sculptured surface measurement are calculated from the parametric surface representation and X-, Y- directional geometric errors of the machine. Also the actual coordinates of the probe are calculated by considering the pre-travel variation of a probe and Z-directional geometric errors. Then, the step-by-sep measurement error analysis method is suggested based on a closed-loop configuration of the machining center including workpiece and probe errors. The simulation study shows the simplicity and effectiveness of the proposed error modeling strategy.

  • PDF

On-Machine Measurement of Sculptured Surfaces Based on CAD/CAM/CAI Integration : I. Measurement Error Modeling (CAD/CAM/CAI 통합에 기초한 자유곡면의 On-Machine Measurement : I. 측정오차 모델링)

  • Cho, Myeong-Woo;Lee, Se-Hee;Seo, Tae-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.172-181
    • /
    • 1999
  • The objective of this research is to develop a measurement error model for sculptured surfaces in On-Machine Measurement (OMM) process based on a closed-loop configuration. The geometric error model of each axis of a vertical CNC Machining center is derived using a 4${\times}$4 homogeneous transformation matrix. The ideal locations of a touch-type probe for the scupltured surface measurement are calculated from the parametric surface representation and X-, Y- directional geometric errors of the machine. Also, the actual coordinates of the probe are calculated by considering the pre-travel variation of a probe and Z-directional geometric errors. Then, the step-by-step measurement error analysis method is suggested based on a closed-loop configuration of the machining center including workpiece and probe errors. The simulation study shows the simplicity and effectiveness of the proposed error modeling strategy.

  • PDF

GPS Output Signal Processing considering both Correlated/White Measurement Noise for Optimal Navigation Filtering

  • Kim, Do-Myung;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.499-506
    • /
    • 2012
  • In this paper, a dynamic modeling for the velocity and position information of a single frequency stand-alone GPS(Global Positioning System) receiver is described. In static condition, the position error dynamic model is identified as a first/second order transfer function, and the velocity error model is identified as a band-limited Gaussian white noise via non-parametric method of a PSD(Power Spectrum Density) estimation in continuous time domain. A Kalman filter is proposed considering both correlated/white measurements noise based on identified GPS error model. The performance of the proposed Kalman filtering method is verified via numerical simulation.

Modeling and Parameter estimation of Antilock Braking System (최소자승법에 의한 ABS(Antilock Braking System)의 모델링 및 파라미터 평가)

  • Song, Chang-Sub;Rho, Hyoung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.87-92
    • /
    • 2002
  • By using the signal error test, model structure of total antilock braking system consisting of electromagnetic system and hydraulic system is determined as 9th order system. For determining parameters of the ABS, using time discrete model of parametric method, parameters in time discrete model are searched by least square method. By bilinear transform, we have found the model of ABS in s domain. Afterward, experimental output data is compared with simulated output data by MATLAB haying identified parameter. As the result, experimental data is agreed with simulated data very well.

Performance Evaluation of Radial Error of a Rotary Table at Five-axis Machine Tool (5축 공작기계에서 회전 테이블의 반경 오차 성능 평가)

  • Lee, Kwang-Il;Yang, Seung-Han
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.208-213
    • /
    • 2012
  • In this paper, the radial error of a rotary table at five-axis machine tool is evaluated by utilizing ISO 230-2 and estimation method using double ball-bar. The geometric error of a rotary table is defined as position dependent geometric errors or position independent geometric errors according to their physical character. Then estimation method of geometric errors using double ball-bar is simply summarized including measurement path, parametric modeling and least squares approach. To estimate representative radial error, offset error, set-up error which affect to the double ball-bar data, mean value of measured data including CCW/CW-direction are used at estimation process. Radial errors are separated from measured data and used for evaluation with ISO 230-2. Finally, suggested evaluation method is applied to a rotary table at five-axis machine tool and its result is analyzed to improve the accuracy of the rotary table.

Parametric Design and Wind Load Application for Retractable Large Spatial Structures (개폐식 대공간 구조물의 파라메트릭 설계와 풍하중 적용)

  • Kim, Si-Uk;Joung, Bo-Ra;Kim, Chee-Kyeong;Lee, Si Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.341-348
    • /
    • 2019
  • The purpose of this study is to model and analyze retractable large spatial structures by applying parametric modeling techniques. The modeling of wind loads in the analysis of typical structures including curved surfaces can be error-prone, and the processing time increases dramatically when there are many types of variables. However, the method based on StrAuto that was developed in previous research, facilitates the efficacious assignment of wind loads to structures and the rapid arrival of conclusions. As a result, it is possible to compare alternatives with various loads, including wind loads, to determine an optimal alternative much faster than the existing process. Further, it is almost impossible to directly input the wind load by calculating the area of an irregularly curved surface. However, the proposed method automatically assigns the wind load, which allows for automatic optimization in a structural analysis system. The approach was applied and optimized using several models, and the results are presented.

Application of Surrogate Modeling to Design of A Compressor Blade to Optimize Stacking and Thickness

  • Samad, Abdus;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.1-12
    • /
    • 2009
  • Surrogate modeling is applied to a compressor blade shape optimization to modify its stacking line and thickness to enhance adiabatic efficiency and total pressure ratio. Six design variables are defined by parametric curves and three objectives; efficiency, total pressure and a combined objective of efficiency and total pressure are considered to enhance the performance of compressor blade. Latin hypercube sampling of design of experiments is used to generate 55 designs within design space constituted by the lower and upper limits of variables. Optimum designs are found by formulating a PRESS (predicted error sum of squares) based averaging (PBA) surrogate model with the help of a gradient based optimization algorithm. The optimum designs using the current variables show that, to optimize the performance of turbomachinery blade, the adiabatic efficiency objective is improved substantially while total pressure ratio objective is increased a very small amount. The multi-objective optimization shows that the efficiency can be increased with the less compensation of total pressure reduction or both objectives can be increased simultaneously.

A Study on the Reproduction of Acoustic Characteristics of a Car's Exhaust Noise Using Digital Filtering Technique (디지탈 필터링 기법(技法)을 이용(利用)한 자동차(自動車) 배기소음(排氣騷音)의 음향특성(音響特性) 재현(再現)에 관(關)한 연구(硏究))

  • Cho, J.H.;Lee, J.M.;Hwang, Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.55-62
    • /
    • 1993
  • Autoregressive moving average(ARMA) model which is a time domain parametric modeling method is implemented for modeling and reproducing characteristics of exhaust noise of an automobile in various RPM range. Experiments have been carried out using 9 set of exhaust noise signals measured at 1,000-3,000 RPM range. Characteristics of sampled signals were estimated using ARMA modeling and Akaike's FPE(final prediction error) criterion to define exact model structure and for model validation. The digital filter consisted of the esitmated ARMA(70,1) model parameters was programed to reproduce exhaust noise. The spectral analysis of reproduced noise is very close to original. The results show that our approaching technique for reproducing acoustic characteristics is valid and feasible to apply in the field of noise quality control.

  • PDF

Modeling of a Building System and its Parameter Identification

  • Park, Herie;Martaj, Nadia;Ruellan, Marie;Bennacer, Rachid;Monmasson, Eric
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.975-983
    • /
    • 2013
  • This study proposes a low order dynamic model of a building system in order to predict thermal behavior within a building and its energy consumption. The building system includes a thermally well-insulated room and an electric heater. It is modeled by a second order lumped RC thermal network based on the thermal-electrical analogy. In order to identify unknown parameters of the model, an experimental procedure is firstly detailed. Then, the different linear parametric models (ARMA, ARX, ARMAX, BJ, and OE models) are recalled. The parameters of the parametric models are obtained by the least square approach. The obtained parameters are interpreted to the parameters of the physically based model in accordance with their relationship. Afterwards, the obtained models are implemented in Matlab/Simulink(R) and are evaluated by the mean of the sum of absolute error (MAE) and the mean of the sum of square error (MSE) with the variable of indoor temperature of the room. Quantities of electrical energy and converted thermal energy are also compared. This study will permit a further study on Model Predictive Control adapting to the proposed model in order to reduce energy consumption of the building.