• Title/Summary/Keyword: Parametric Data Model

Search Result 621, Processing Time 0.038 seconds

Development of a 3D earthwork model based on reverse engineering

  • Kim, Sung-Keun
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.641-642
    • /
    • 2015
  • Unlike for other building processes, BIM for earthwork does not need a large variety of 3D model shapes; however, it requires a 3D model that can efficiently reflect the changing features of the ground shape and provide soil type-dependent workload calculation and information on equipment for optimal management. Objects for earthwork have not yet been defined because the current BIM system does not provide them. The BIM technology commonly applied in the manufacturing center uses real-object data obtained through 3D scanning to generate 3D parametric solid models. 3D scanning, which is used when there are no existing 3D models, has the advantage of being able to rapidly generate parametric solid models. In this study, A method to generate 3D models for earthwork operations using reverse engineering is suggested. 3D scanning is used to create a point cloud of a construction site and the point cloud data are used to generate a surface model, which was then converted into a parametric model with 3D objects for earthwork

  • PDF

A General Semiparametric Additive Risk Model

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.2
    • /
    • pp.421-429
    • /
    • 2008
  • We consider a general semiparametric additive risk model that consists of three components. They are parametric, purely and smoothly nonparametric components. In parametric component, time dependent term is known up to proportional constant. In purely nonparametric component, time dependent term is an unknown function, and time dependent term in smoothly nonparametric component is an unknown but smoothly function. As an estimation method of this model, we use the weighted least square estimation by Huffer and McKeague (1991). We provide an illustrative example as well as a simulation study that compares the performance of our method with the ordinary least square method.

  • PDF

3D Parametric Modeling of RC Piers and Development of Data Generation Module for a Structural Analysis with 3D Model of RC Piers (RC 교각의 3차원 매개변수 모델링 및 비선형 구조해석 입력 데이터 생성 모듈 구축)

  • Son, You-Jin;Shin, Won-Chul;Lee, Sang-Chul;Lee, Heon-Min;Shin, Hyun-Mock
    • Journal of KIBIM
    • /
    • v.3 no.3
    • /
    • pp.19-28
    • /
    • 2013
  • In Korea highway bridges, most piers are the type of one-column or multi-column ones. So, in this study, under an environment applying BIM so fast, to activate researches on two-column piers subjected to bidirectional seismic loading, a 3D parametric modeling method was selected when the model of two-column piers and one-column piers were formed. Also, interface module between input data in structural analysis and 3D model of RC pier was developed. The module can create the input data for non-linear structural analysis like material, geometric properties and additional coefficients.

A Note on Test for Model Adequacy in Nonlinear Regression

  • Kahng, Myung-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.3
    • /
    • pp.689-694
    • /
    • 2004
  • We investigate the test for model adequacy in nonlinear regression. We can expect the usual likelihood ratio statistic to be unaffected by any parametric- effect curvature; only the effect of intrinsic curvature needs to be considered. Multiplicative correction factor is derived for the limiting distribution of test statistic, which is a function of the intrinsic curvature arrays.

  • PDF

Survival Analysis of Patients with Breast Cancer using Weibull Parametric Model

  • Baghestani, Ahmad Reza;Moghaddam, Sahar Saeedi;Majd, Hamid Alavi;Akbari, Mohammad Esmaeil;Nafissi, Nahid;Gohari, Kimiya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8567-8571
    • /
    • 2016
  • Background: The Cox model is known as one of the most frequently-used methods for analyzing survival data. However, in some situations parametric methods may provide better estimates. In this study, a Weibull parametric model was employed to assess possible prognostic factors that may affect the survival of patients with breast cancer. Materials and Methods: We studied 438 patients with breast cancer who visited and were treated at the Cancer Research Center in Shahid Beheshti University of Medical Sciences during 1992 to 2012; the patients were followed up until October 2014. Patients or family members were contacted via telephone calls to confirm whether they were still alive. Clinical, pathological, and biological variables as potential prognostic factors were entered in univariate and multivariate analyses. The log-rank test and the Weibull parametric model with a forward approach, respectively, were used for univariate and multivariate analyses. All analyses were performed using STATA version 11. A P-value lower than 0.05 was defined as significant. Results: On univariate analysis, age at diagnosis, level of education, type of surgery, lymph node status, tumor size, stage, histologic grade, estrogen receptor, progesterone receptor, and lymphovascular invasion had a statistically significant effect on survival time. On multivariate analysis, lymph node status, stage, histologic grade, and lymphovascular invasion were statistically significant. The one-year overall survival rate was 98%. Conclusions: Based on these data and using Weibull parametric model with a forward approach, we found out that patients with lymphovascular invasion were at 2.13 times greater risk of death due to breast cancer.

Model-free Deadbeat Predictive Current Control of a Surface-mounted Permanent Magnet Synchronous Motor Drive System

  • Zhou, Yanan;Li, Hongmei;Zhang, Hengguo
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.103-115
    • /
    • 2018
  • Parametric uncertainties and inverter nonlinearity exist in the permanent magnet synchronous motor (PMSM) drive system of electrical vehicles, which may lead to performance degradation or failure, and eventually threaten reliable operation. Therefore, a model-free deadbeat predictive current controller (MFDPCC) for PMSM drive systems is proposed in this study. The data-driven ultra-local model of a surface-mounted PMSM (SMPMSM) drive system that consists of parametric uncertainties and inverter nonlinearity is first established through the input and output data of a SMPMSM drive system. Subsequently, MFDPCC is designed. The performance comparisons and analyses of the proposed MFDPCC, the conventional proportional-integral controller, and the model-based deadbeat predictive current controller for SMPMSM drive systems are implemented via system simulation and experimental tests. Results show the effectiveness and technical advantages of the proposed MFDPCC.

Healing of CAD Model Errors Using Design History (설계이력 정보를 이용한 CAD모델의 오류 수정)

  • Yang J. S.;Han S. H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.4
    • /
    • pp.262-273
    • /
    • 2005
  • For CAD data users, few things are as frustrating as receiving CAD data that is unusable due to poor data quality. Users waste time trying to get better data, fixing the data, or even rebuilding the data from scratch from paper drawings or other sources. Most related works and commercial tools handle the boundary representation (B-Rep) shape of CAD models. However, we propose a design history?based approach for healing CAD model errors. Because the design history, which covers the features, the history tree, the parameterization data and constraints, reflects the design intent, CAD model errors can be healed by an interdependency analysis of the feature commands or of the parametric data of each feature command, and by the reconstruction of these feature commands through the rule-based reasoning of an expert system. Unlike other B Rep correction methods, our method automatically heals parametric feature models without translating them to a B-Rep shape, and it also preserves engineering information.

Semiparametric Approach to Logistic Model with Random Intercept (준모수적 방법을 이용한 랜덤 절편 로지스틱 모형 분석)

  • Kim, Mijeong
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1121-1131
    • /
    • 2015
  • Logistic models with a random intercept are useful to analyze longitudinal binary data. Traditionally, the random intercept of the logistic model is assumed to be parametric (such as normal distribution) and is also assumed to be independent to variables. Such assumptions are very strong and restricted for application to real data. Recently, Garcia and Ma (2015) derived semiparametric efficient estimators for logistic model with a random intercept without these assumptions. Their estimator shows the consistency where we do not assume any parametric form for the random intercept. In addition, the method is computationally simple. In this paper, we apply this method to analyze toenail infection data. We compare the semiparametric estimator with maximum likelihood estimator, penalized quasi-likelihood estimator and hierarchical generalized linear estimator.

A study on the Bayesian nonparametric model for predicting group health claims

  • Muna Mauliza;Jimin Hong
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.3
    • /
    • pp.323-336
    • /
    • 2024
  • The accurate forecasting of insurance claims is a critical component for insurers' risk management decisions. Hierarchical Bayesian parametric (BP) models can be used for health insurance claims forecasting, but they are unsatisfactory to describe the claims distribution. Therefore, Bayesian nonparametric (BNP) models can be a more suitable alternative to deal with the complex characteristics of the health insurance claims distribution, including heavy tails, skewness, and multimodality. In this study, we apply both a BP model and a BNP model to predict group health claims using simulated and real-world data for a private life insurer in Indonesia. The findings show that the BNP model outperforms the BP model in terms of claims prediction accuracy. Furthermore, our analysis highlights the flexibility and robustness of BNP models in handling diverse data structures in health insurance claims.

Model Classification of Quality Statistics Using Block Repeated Measures (블록 반복측정을 이용한 품질통계 모형의 유형화)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.3
    • /
    • pp.165-171
    • /
    • 2007
  • Dependent models in quality statistics are classified as serially autocorrelated model, multivariate model and dependent sample model. Dependent sample model is most efficient in time and cost to obtain samples among the above models. This paper proposes to implement parametric and nonparametric models into production system depended on demand pattern. Nonparametric models have distribution free and asymptotic distribution free techniques. Quality statistical models are classified into two categories ; the number of dependent sample and the type of data. The type of data consists of nominal, ordinal, interval and ratio data. The number of dependent sample divides into 2 samples and more than 3 samples.