• Title/Summary/Keyword: Parametric Coding

Search Result 29, Processing Time 0.02 seconds

Study on novel hierarchical parametric stereo coding method for Multichannel audio signal (멀티채널 오디오 신호의 계층적 코딩이 가능한 파라메트릭 스테레오 코딩 방법에 대한 연구)

  • Moon, Han-Gil
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.875-876
    • /
    • 2008
  • Parametric stereo coding is a technique to efficiently code a stereo audio signal as a monaural signal plus small amount of parametric overhead to describe the stereo image. The stereo properties are analyzed, encoded, and reinstated in a decoder according to spatial psycho-acoustical principles. However, coding of multichannel audio signal using parametric stereo still requires considerable bit-rate. In this paper, enhanced parametric stereo coding for multichannel audio signal is proposed.

  • PDF

Object Audio Coding Standard SAOC Technology and Application (객체 오디오 부호화 표준 SAOC 기술 및 응용)

  • Oh, Hyen-O;Jung, Yang-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.45-55
    • /
    • 2010
  • Object-based audio coding technology has been interested with its expectation to apply in wide areas. Recently, ISO/IEC MPEG has standardized a parametric object audio coding method, the SAOC (Spatial Audio Object Coding). This paper introduces parametric object audio coding techniques with special focus on the MPEG SAOC and also describes several issues and solutions that should be considered for a success in its application.

Pilot-Based Coding Scheme for Parametric Stereo in Enhanced aacPlus

  • Pang, Hee-Suk
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.613-615
    • /
    • 2009
  • We propose a pilot-based coding (PBC) scheme for lossless bit rate reduction of parametric stereo (PS) in enhanced aacPlus. It uses PBC in addition to the existing frequency and time differential coding to encode and decode PS parameter indexes. We also design optimal Huffman codebooks (HCBs) for PBC in the proposed scheme. Experiments show that the proposed scheme is superior to the original coding scheme, where both the new coding structure and the optimal HCBs contribute to the bit rate reduction.

Audio Object Coding Standard Technology - MPEG SAOC (오디오 객체 부호화 표준 - MPEG SAOC)

  • Jung, Yang-Won;Oh, Hyen-O
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.7
    • /
    • pp.630-639
    • /
    • 2009
  • This paper introduces MPEG SAOC (Spatial Audio Object Coding) that has been standardized in MPEG audio subgroup. MPEG SAOC is a trendy parametric coding technology conceptually similar to PS (Parametric Stereo) and the MPEG Surround. SAOC especially parameterizes and codes the spatial information for the object signals comprising a downmixed audio scene and thus lets users render one's preferred scene in an interactive manner.

Fast Intra-Prediction Mode Decision Algorithm for H.264/AVC using Non-parametric Thresholds and Simplified Directional Masks

  • Kim, Young-Ju
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.501-506
    • /
    • 2009
  • In the H.264/ AVC video coding standard, the intra-prediction coding with various block sizes offers a considerably high improvement in coding efficiency compared to previous standards. In order to achieve this, H.264/AVC uses the Rate-distortion optimization (RDO) technique to select the best intraprediction mode for a macroblock, and it brings about the drastic increase of the computation complexity of H.264 encoder. To reduce the computation complexity and stabilize the coding performance on visual quality, this paper proposed a fast intra-prediction mode decision algorithm using non-parametric thresholds and simplified directional masks. The use of nonparametric thresholds makes the intra-coding performance not be dependent on types of video sequences and simplified directional masks reduces the compuation loads needed by the calculation of local edge information. Experiment results show that the proposed algorithm is able to reduce more than 55% of the whole encoding time with a negligible loss in PSNR and bitrates and provides the stable performance regardless types of video sequences.

An Efficient Time-Frequency Representation for Parametric-Based Audio Object Coding

  • Beack, Seung-Kwon;Lee, Tae-Jin;Kim, Min-Je;Kang, Kyeong-Ok
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.945-948
    • /
    • 2011
  • Object-based audio coding can provide new music applications with interactivity. To efficiently compress a lot of target audio objects, a subband-based parametric coding scheme has been adopted for MPEG spatial audio object coding. In this letter, the time-frequency (T/F) subband analysis structure is investigated. A reconfigured T/F structure is also proposed to enhance the generating performance of sound scenes such as 'karaoke' and 'solo' play in interactive music scenarios. From the experimental results, it was confirmed that the proposed scheme remarkably improves the SNR and sound quality.

Search of Optimal Contexts for Context-adaptive Coding of Stereo Parameters in Parametric Stereo of Enhanced aacPlus (Enhanced aacPlus의 Parametric Stereo에서 스테레오 파라미터의 컨텍스트 적응 코딩을 위한 최적 컨텍스트 탐색)

  • Pang, Hee-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.7
    • /
    • pp.435-440
    • /
    • 2012
  • We propose optimal contexts for context-adaptive coding of stereo parameters in parametric stereo (PS) of enhanced aacPlus. For the quantized indexes of stereo parameters, 8 context candidates were proposed based on the index values and their combinations adjacent to a source index in the time-stereo band domain, where the time-stereo band region was further divided into 4 regions based on refresh/non-refresh frames and stereo bands. The optimal contexts for each region were proposed by experiments, which are expected to be used for context-adaptive coding of PS for improved performance.

Channel Expansion Technology in MPEG Audio (MPEG 오디오의 채널 확장 기술)

  • Pang, Hee-Suk
    • Journal of Broadcast Engineering
    • /
    • v.16 no.5
    • /
    • pp.714-721
    • /
    • 2011
  • MPEG audio uses the masking effect, high frequency component synthesis based on spectral band replication, and channel expansion based on parametric stereo for efficient compression of audio signals. In this paper, we present an overview of the state-of-the-art channel expansion technology in MPEG audio. We also present technical overviews and application examples to broadcasting services for HE-AAC v.2, MPEG Surround, spatial audio object coding (SAOC), and unified speech and audio coding (USAC) which are MPEG audio codecs based on the channel expansion technology.

Improved Phase Synthesis for Parametric Stereo Audio Coding (파라메트릭 스테레오 오디오 부호화를 위한 향상된 위상 합성 기법)

  • Hyun, Dong-Il;Park, Young-Cheol;Youn, Dae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.184-190
    • /
    • 2013
  • Parametric stereo(PS) audio coding is a specific version of spatial audio coding. In this paper, the problem due to the conventional synthesis of phase differences. In the conventional upmix matrix, phase differences are synthesized not only on downmix signal but also ambient signal, which violates the assumption that the ambient signals are anti-phased. Deterioration due to the phase synthesis is analyzed, especially, for low interchannel correlation. To solve this problem, new upmix matrix is proposed, which synthesizes phase differences only on downmix signal. The performance of the proposed upmix matrix is verified by the subjective listening tests.

A Non-parametric Fast Block Size Decision Algorithm for H.264/AVC Intra Prediction

  • Kim, Young-Ju
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.193-198
    • /
    • 2009
  • The H.264/ AVC video coding standard supports the intra prediction with various block sizes for luma component and a 8x8 block size for chroma components. This new feature of H.264/AVC offers a considerably higher improvement in coding efficiency compared to previous compression standards. In order to achieve this, H.264/AVC uses the Rate-distortion optimization (RDO) technique to select the best intra prediction mode for each block size, and it brings about the drastic increase of the computation complexity of H.264 encoder. In this paper, a fast block size decision algorithm is proposed to reduce the computation complexity of the intra prediction in H.264/AVC. The proposed algorithm computes the smoothness based on AC and DC coefficient energy for macroblocks and compares with the nonparametric criteria which is determined by considering information on neighbor blocks already reconstructed, so that deciding the best probable block size for the intra prediction. Also, the use of non-parametric criteria makes the performance of intra-coding not be dependent on types of video sequences. The experimental results show that the proposed algorithm is able to reduce up to 30% of the whole encoding time with a negligible loss in PSNR and bitrates and provides the stable performance regardless types of video sequences.