• Title/Summary/Keyword: Parametric

Search Result 5,975, Processing Time 0.036 seconds

Identification of Topological Entities and Naming Mapping for Parametric CAD Model Exchanges

  • Mun, Duh-Wan;Han, Soon-Hung
    • International Journal of CAD/CAM
    • /
    • v.5 no.1
    • /
    • pp.69-81
    • /
    • 2005
  • As collaborative design and configuration design gain increasing importance in product development, it becomes essential to exchange parametric CAD models among participants. Parametric CAD models can be represented and exchanged in the form of a macro file or a part file that contains the modeling history of a product. The modeling history of a parametric CAD model contains feature specifications and each feature has selection information that records the name of the referenced topological entities. Translating this selection information requires solving the problems of how to identify the referenced topological entities of a feature (persistent naming problem) and how to convert the selection information into the format of the receiving CAD system (naming mapping problem). The present paper introduces the problem of exchanging parametric CAD models and proposes a solution to naming mapping.

SOME FIXED-POINT RESULTS ON PARAMETRIC Nb-METRIC SPACES

  • Tas, Nihal;Ozgur, Nihal Yilmaz
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.943-960
    • /
    • 2018
  • Our aim is to introduce the notion of a parametric $N_b-metric$ and study some basic properties of parametric $N_b-metric$ spaces. We give some fixed-point results on a complete parametric $N_b-metric$ space. Some illustrative examples are given to show that our results are valid as the generalizations of some known fixed-point results. As an application of this new theory, we prove a fixed-circle theorem on a parametric $N_b-metric$ space.

Parametric Body Model Generation for Garment Drape Simulation

  • Kim, Sungmin;Park, Chang-Kyu
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.12-18
    • /
    • 2004
  • A parametric body model generation system has been developed. Using various mathematic and geometric algorithms of this system, a three-dimensionally scanned human body can be converted into a resizable body model. Once a parametric body model is formed, its size and shape can be modified instantaneously by providing appropriate anthropometric data. To facilitate the subsequent pattern arrangement process for garment drape simulation, a bounding box generation algorithm has been developed in this study. Also the model can be converted into a set of parametric surfaces that it can also be used for three-dimensional garment pattern design system.

Semiparametric mixture of experts with unspecified gate network

  • Jung, Dahai;Seo, Byungtae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.685-695
    • /
    • 2017
  • The traditional mixture of experts (ME) modeled the gate network using a certain parametric function. However, if the assumed parametric function does not properly reflect the true nature, the prediction strength of ME would become weak. For example, the parametric ME often uses logistic or multinomial logistic models for the network model. However, this could be very misleading if the true nature of the data is quite different from those models. Although, in this case, we may develop more flexible parametric models by extending the model at hand, we will never be free from such misspecification problems. In order to alleviate such weakness of the parametric ME, we propose to use the semi-parametric mixture of experts (SME) in which the gate network is estimated in a non-parametrical way. Based on this, we compared the performance of the SME with those of ME and neural networks via several simulation experiments and real data examples.

Parametrically Excited Vibrations of Second-Order Nonlinear Systems (2차 비선형계의 파라메트릭 가진에 의한 진동 특성)

  • 박한일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.67-76
    • /
    • 1992
  • This paper describes the vibration characteristic of second-order nonlinear systems subjected to parametric excitation. Emphasis is put on the examination of the hydrodynamic nonlinear damping effect on limiting the response amplitudes of parametric vibration. Since the parametric vibration is described by the Mathieu equation, the Mathieu stability chart is examined in this paper. In addition, the steady-state solutions of the nonlinear Mathieu equation in the first instability region are obtained by using a perturbation technique and are compared with those by a numerical integration method. It is shown that the response amplitudes of parametric vibration are limited even in unstable conditions by hydrodynamic nonlinear damping force. The largest reponse amplitude of parametric vibration occurs in the first instability region of Mathieu stability chart. The parametric excitation induces the response of a dynamic system to be subharmonic, superharmonic or chaotic according to their dynamic conditions.

  • PDF

Parametric NURBS Curve Interpolators: A Review

  • Mohan, Sekar;Kweon, Sung-Hwan;Lee, Dong-Mok;Yang, Seung-Han
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.84-92
    • /
    • 2008
  • Free-form shapes which were once considered as an aesthetic feature are now an important functional requirement. CNC industries are looking for a compact solution for reproducing free-form shapes as conventional interpolation models are inadequate, The parametric curve interpolator developed in the last decade has clearly emerged as favorite among its contemporaries in recent years, At present intense research has been done on parametric curve interpolators and interesting developments are reported. Out of the various parametric representations for curves and surfaces, NURBS has been standardized and widely used in free-form shape design. This paper presents a review of various methods of parametric interpolation for NURBS and discusses the salient features, problems and solutions. Recent approaches on variable feedrate interpolation, parameter compensation are also reviewed and research trends are addressed finally.

FE Model Based Parametric Study Support System

  • Jang, Beom-Seon
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.4
    • /
    • pp.7-19
    • /
    • 2008
  • In preliminary ship design, a parametric study is a more realistic way to explore design space and analyze design problem than an optimization technique due to time-consuming computational work or a difficulty in incorporating all constraints into the optimization formulation. In the parametric study, feasible alternatives are examined in various aspects; the best one can be selected. Among the aspects, the strength assessment by FE analysis is an essential process in the ship design. This paper proposes a system to facilitate a parametric study for FE model based on design of experiment (DOE). It works on a FE pre-processor environment and assists a user to define a parametric study by interacting with FE model. It also provides an interface module with a FE solver in order to control the input file and extract predefined FE results from the output file. Based on the proposed system, a better understating and a better design are expected to be achieved.

Geometric Fitting of Parametric Curves and Surfaces

  • Ahn, Sung-Joon
    • Journal of Information Processing Systems
    • /
    • v.4 no.4
    • /
    • pp.153-158
    • /
    • 2008
  • This paper deals with the geometric fitting algorithms for parametric curves and surfaces in 2-D/3-D space, which estimate the curve/surface parameters by minimizing the square sum of the shortest distances between the curve/surface and the given points. We identify three algorithmic approaches for solving the nonlinear problem of geometric fitting. As their general implementation we describe a new algorithm for geometric fitting of parametric curves and surfaces. The curve/surface parameters are estimated in terms of form, position, and rotation parameters. We test and evaluate the performances of the algorithms with fitting examples.

Note on response dimension reduction for multivariate regression

  • Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.5
    • /
    • pp.519-526
    • /
    • 2019
  • Response dimension reduction in a sufficient dimension reduction (SDR) context has been widely ignored until Yoo and Cook (Computational Statistics and Data Analysis, 53, 334-343, 2008) founded theories for it and developed an estimation approach. Recent research in SDR shows that a semi-parametric approach can outperform conventional non-parametric SDR methods. Yoo (Statistics: A Journal of Theoretical and Applied Statistics, 52, 409-425, 2018) developed a semi-parametric approach for response reduction in Yoo and Cook (2008) context, and Yoo (Journal of the Korean Statistical Society, 2019) completes the semi-parametric approach by proposing an unstructured method. This paper theoretically discusses and provides insightful remarks on three versions of semi-parametric approaches that can be useful for statistical practitioners. It is also possible to avoid numerical instability by presenting the results for an orthogonal transformation of the response variables.

Intensive comparison of semi-parametric and non-parametric dimension reduction methods in forward regression

  • Shin, Minju;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.5
    • /
    • pp.615-627
    • /
    • 2022
  • Principal Fitted Component (PFC) is a semi-parametric sufficient dimension reduction (SDR) method, which is originally proposed in Cook (2007). According to Cook (2007), the PFC has a connection with other usual non-parametric SDR methods. The connection is limited to sliced inverse regression (Li, 1991) and ordinary least squares. Since there is no direct comparison between the two approaches in various forward regressions up to date, a practical guidance between the two approaches is necessary for usual statistical practitioners. To fill this practical necessity, in this paper, we newly derive a connection of the PFC to covariance methods (Yin and Cook, 2002), which is one of the most popular SDR methods. Also, intensive numerical studies have done closely to examine and compare the estimation performances of the semi- and non-parametric SDR methods for various forward regressions. The founding from the numerical studies are confirmed in a real data example.